Self-Regulated Learning for Egocentric Video Activity Anticipation

Related tags

Deep LearningSRL
Overview

Self-Regulated Learning for Egocentric Video Activity Anticipation

Introduction

This is a Pytorch implementation of the model described in our paper:

Z. Qi, S. Wang, C. Su, L. Su, Q. Huang, and Q. Tian. Self-Regulated Learning for Egocentric Video Activity Anticipation. TPAMI 2021.

Dependencies

  • Pytorch >= 1.0.1
  • Cuda 9.0.176
  • Cudnn 7.4.2
  • Python 3.6.8

Data

EPIC-Kitchens dataset

For the raw data of the EPIC-Kitchens dataset, please refer to https://github.com/epic-kitchens/download-scripts to download.

For the three modality features (rgb, flow, obj), please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

EGTEA Gaze+ dataset

For the raw data of the EGTEA Gaze+ dataset, please refer to http://cbs.ic.gatech.edu/fpv/ to download.

For the extracted features, please refer to https://github.com/fpv-iplab/rulstm to download. After downloading, put them in the folder './data'.

50 Salads dataset

For the raw data of the 50 Salads dataset, please refer to http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/ to download.

For the extracted features, please refer to https://github.com/colincsl/TemporalConvolutionalNetworks to download. After downloading, put them in the folder './data'.

Breakfast dataset

For the raw data of the Breakfast dataset, please refer to https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/ to download.

For the extraced I3D features, please download from Baidu passward: 'wub3' or Google Drive. After downloading, put them in the folder './data'.

Train for Epic-Kitchen dataset

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --wd 1e-5 --lr 0.1 --reinforce_verb_weight 0.01 --reinforce_noun_weight 0.01 --revision_weight 0.8 --mode train --modality rgb --hidden 1024 --feat_in 1024

Silimar commonds can be used for flow or obj features.

Validation for Epic-Kitchen dataset

Please download the pre-trained model weigths from Baidu passward: 'wub3' or Google Drive, and put them in the folder './results/EPIC/base_srl/pre_trained/'.

For rgb feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality rgb --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For flow feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality flow --hidden 1024 --feat_in 1024 --resume_timestamp pre_trained

For obj feature, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality obj --hidden 352 --feat_in 352 --resume_timestamp pre_trained

For three modality features, python main.py --gpu_ids 0 --batch_size 128 --mode validate --modality fusion --resume_timestamp pre_trained

Citation

Please cite our paper if you use this code in your own work:

@article{qi2021self,
  title={Self-Regulated Learning for Egocentric Video Activity Anticipation},
  author={Qi, Zhaobo and Wang, Shuhui and Su, Chi and Su, Li and Huang, Qingming and Tian, Qi},
  journal={IEEE Transactions on Pattern Analysis \& Machine Intelligence},
  number={01},
  pages={1--1},
  year={2021},
  publisher={IEEE Computer Society}
}

Concat

If you have any problem about our code, feel free to contact

Owner
qzhb
Video Understanding
qzhb
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022