GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

Overview

GarmentNets

This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion. This paper has been accepted to ICCV 2021.

Overview

Cite this work

@inproceedings{chi2021garmentnets,
  title={GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion},
  author={Chi, Cheng and Song, Shuran},
  booktitle={The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Datasets

  1. GarmentNets Dataset (GarmentNets training and evaluation)

  2. GarmentNets Simulation Dataset (raw Blender simluation data to generate the GarmentNets Dataset)

  3. CLOTH3D Dataset (cloth meshes in a canonical pose)

The GarmentNets Dataset contains point clouds before and after gripping simulation with point-to-point correspondance, as well as the winding number field ($128^3$ volume).

The GarmentNets Simulation Dataset contains the raw vertecies, RGBD images and per-pixel UV from Blender simulation and rendering of CLOTH3D dataset. Each cloth instance in CLOTH3D is simulated 21 times with different random gripping points.

Both datasets are stored using Zarr format.

Pretrained Models

GarmentNets Pretrained Models

GarmentNets are trained in 2 stages:

  1. PointNet++ canoninicalization network
  2. Winding number field and warp field prediction network

The checkpoints for 2 stages x 6 categories (12 in total) are all included. For evaluation, the checkpoints in the garmentnets_checkpoints/pipeline_checkpoints directory should be used.

Usage

Installation

A conda environment.yml for python=3.9, pytorch=1.9.0, cudatoolkit=11.1 is provided.

conda env create --file environment.yml

Alternatively, you can directly executive following commands:

conda install pytorch torchvision cudatoolkit=11.1 pytorch-geometric pytorch-scatter wandb pytorch-lightning igl hydra-core scipy scikit-image matplotlib zarr numcodecs tqdm dask numba -c pytorch -c nvidia -c rusty1s -c conda-forge

pip install potpourri3d==0.0.4

Evaluation

Assuming the project directory is ~/dev/garmentnets. Assuming the GarmentNets Dataset has been extracted to /data/garmentnets_dataset.zarr and GarmentNets Pretrained Models has been extracted to /data/garmentnets_checkpoints .

Generate prediction Zarr with

(garmentnets)$ python predict.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr/Dress main.checkpoint_path=
    
     /data/garmentnets_checkpoints/pipeline_checkpoints/Dress_pipeline.ckpt

    
   

Note that the dataset zarr_path and checkpoitn_path must belong to the same category (Dress in this case).

Hydra should automatically create a run directory such as /outputs/2021-07-31/01-43-33 . To generate evaluation metrics, execute:

(garmentnets)$ python eval.py main.prediction_output_dir=
   
    /outputs/2021-07-31/01-43-33

   

The all_metrics_agg.csv and summary.json should show up in the Hydra generated directory for this run.

Training

As mentioned above, GarmentNets are trained in 2 stages. Using a single Nvidia RTX 2080Ti, training stage 1 will take roughly a week and training stage 2 can usually be done overnight.

To retrain stage 2 with a pre-trained stage 1 checkpoint:

(garmentnets)$ python train_pipeline.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr pointnet2_model.checkpoint_path=
    
     /data/garmentnets_checkpoints/pointnet2_checkpoints/Dress_pointnet2.ckpt

    
   

To train stage 1 from scratch:

(garmentnets)$ python train_pointnet2.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr

   
Owner
Columbia Artificial Intelligence and Robotics Lab
Columbia Artificial Intelligence and Robotics Lab
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022