StyleGAN2-ada for practice

Overview

StyleGAN2-ada for practice

Open In Colab

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + PyTorch 1.7.1, requires FFMPEG for sequence-to-video conversions. For more explicit details refer to the original implementations.

Here is previous Tensorflow-based version, which produces compatible models (but not vice versa).
I still prefer it for few-shot training (~100 imgs), and for model surgery tricks (not ported here yet).

Features

  • inference (image generation) in arbitrary resolution (finally with proper padding on both TF and Torch)
  • multi-latent inference with split-frame or masked blending
  • non-square aspect ratio support (auto-picked from dataset; resolution must be divisible by 2**n, such as 512x256, 1280x768, etc.)
  • transparency (alpha channel) support (auto-picked from dataset)
  • using plain image subfolders as conditional datasets
  • funky "digression" inference technique, ported from Aydao

Few operation formats ::

  • Windows batch-files, described below (if you're on Windows with powerful GPU)
  • local Jupyter notebook (for non-Windows platforms)
  • Colab notebook (max ease of use, requires Google drive)

Just in case, original StyleGAN2-ada charms:

  • claimed to be up to 30% faster than original StyleGAN2
  • has greatly improved training (requires 10+ times fewer samples)
  • has lots of adjustable internal training settings
  • works with plain image folders or zip archives (instead of custom datasets)
  • should be easier to tweak/debug

Training

  • Put your images in data as subfolder or zip archive. Ensure they all have the same color channels (monochrome, RGB or RGBA).
    If needed, first crop square fragments from source video or directory with images (feasible method, if you work with patterns or shapes, rather than compostions):
 multicrop.bat source 512 256 

This will cut every source image (or video frame) into 512x512px fragments, overlapped with 256px shift by X and Y. Result will be in directory source-sub, rename it as you wish. If you edit the images yourself (e.g. for non-square aspect ratios), ensure their correct size. For conditional model split the data by subfolders (mydata/1, mydata/2, ..).

  • Train StyleGAN2-ada on the prepared dataset (image folder or zip archive):
 train.bat mydata

This will run training process, according to the settings in src/train.py (check and explore those!!). Results (models and samples) are saved under train directory, similar to original Nvidia approach. For conditional model add --cond option.

Please note: we save both compact models (containing only Gs network for inference) as -...pkl (e.g. mydata-512-0360.pkl), and full models (containing G/D/Gs networks for further training) as snapshot-...pkl. The naming is for convenience only.

Length of the training is defined by --lod_kimg X argument (training duration per layer/LOD). Network with base resolution 1024px will be trained for 20 such steps, for 512px - 18 steps, et cetera. Reasonable lod_kimg value for full training from scratch is 300-600, while for finetuning 20-40 is sufficient. One can override this approach, setting total duration directly with --kimg X.

If you have troubles with custom cuda ops, try removing their cached version (C:\Users\eps\AppData\Local\torch_extensions on Windows).

  • Resume training on mydata dataset from the last saved model at train/000-mydata-512-.. directory:
 train_resume.bat mydata 000-mydata-512-..
  • Uptrain (finetune) well-trained model ffhq-512.pkl on new data:
 train_resume.bat newdata ffhq-512.pkl

No need to count exact steps in this case, just stop when you're ok with the results (it's better to set low lod_kimg to follow the progress).

Generation

Generated results are saved as sequences and videos (by default, under _out directory).

  • Test the model in its native resolution:
 gen.bat ffhq-1024.pkl
  • Generate custom animation between random latent points (in z space):
 gen.bat ffhq-1024 1920-1080 100-20

This will load ffhq-1024.pkl from models directory and make a 1920x1080 px looped video of 100 frames, with interpolation step of 20 frames between keypoints. Please note: omitting .pkl extension would load custom network, effectively enabling arbitrary resolution, multi-latent blending, etc. Using filename with extension will load original network from PKL (useful to test foreign downloaded models). There are --cubic and --gauss options for animation smoothing, and few --scale_type choices. Add --save_lat option to save all traversed dlatent w points as Numpy array in *.npy file (useful for further curating).

  • Generate more various imagery:
 gen.bat ffhq-1024 3072-1024 100-20 -n 3-1

This will produce animated composition of 3 independent frames, blended together horizontally (similar to the image in the repo header). Argument --splitfine X controls boundary fineness (0 = smoothest).

Instead of simple frame splitting, one can load external mask(s) from b/w image file (or folder with file sequence):

 gen.bat ffhq-1024 1024-1024 100-20 --latmask _in/mask.jpg

Arguments --digress X would add some animated funky displacements with X strength (by tweaking initial const layer params). Arguments --trunc X controls truncation psi parameter, as usual.

NB: Windows batch-files support only 9 command arguments; if you need more options, you have to edit batch-file itself.

  • Project external images onto StyleGAN2 model dlatent points (in w space):
 project.bat ffhq-1024.pkl photo

The result (found dlatent points as Numpy arrays in *.npy files, and video/still previews) will be saved to _out/proj directory.

  • Generate smooth animation between saved dlatent points (in w space):
 play_dlatents.bat ffhq-1024 dlats 25 1920-1080

This will load saved dlatent points from _in/dlats and produce a smooth looped animation between them (with resolution 1920x1080 and interpolation step of 25 frames). dlats may be a file or a directory with *.npy or *.npz files. To select only few frames from a sequence somename.npy, create text file with comma-delimited frame numbers and save it as somename.txt in the same directory (check examples for FFHQ model). You can also "style" the result: setting --style_dlat blonde458.npy will load dlatent from blonde458.npy and apply it to higher layers, producing some visual similarity. --cubic smoothing and --digress X displacements are also applicable here.

  • Generate animation from saved point and feature directions (say, aging/smiling/etc for FFHQ model) in dlatent w space:
 play_vectors.bat ffhq-1024.pkl blonde458.npy vectors_ffhq

This will load base dlatent point from _in/blonde458.npy and move it along direction vectors from _in/vectors_ffhq, one by one. Result is saved as looped video.

Credits

StyleGAN2: Copyright © 2021, NVIDIA Corporation. All rights reserved.
Made available under the Nvidia Source Code License-NC
Original paper: https://arxiv.org/abs/2006.06676

Owner
vadim epstein
vadim epstein
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022