Block Sparse movement pruning

Overview

Movement Pruning: Adaptive Sparsity by Fine-Tuning

Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; however, it is less effective in the transfer learning regime that has become standard for state-of-the-art natural language processing applications. We propose the use of movement pruning, a simple, deterministic first-order weight pruning method that is more adaptive to pretrained model fine-tuning. Experiments show that when pruning large pretrained language models, movement pruning shows significant improvements in high-sparsity regimes. When combined with distillation, the approach achieves minimal accuracy loss with down to only 3% of the model parameters:

Fine-pruning+Distillation
(Teacher=BERT-base fine-tuned)
BERT base
fine-tuned
Remaining
Weights (%)
Magnitude Pruning L0 Regularization Movement Pruning Soft Movement Pruning
SQuAD - Dev
EM/F1
80.4/88.1 10%
3%
70.2/80.1
45.5/59.6
72.4/81.9
64.3/75.8
75.6/84.3
67.5/78.0
76.6/84.9
72.7/82.3
MNLI - Dev
acc/MM acc
84.5/84.9 10%
3%
78.3/79.3
69.4/70.6
78.7/79.7
76.0/76.2
80.1/80.4
76.5/77.4
81.2/81.8
79.5/80.1
QQP - Dev
acc/F1
91.4/88.4 10%
3%
79.8/65.0
72.4/57.8
88.1/82.8
87.0/81.9
89.7/86.2
86.1/81.5
90.2/86.8
89.1/85.5

This page contains information on how to fine-prune pre-trained models such as BERT to obtain extremely sparse models with movement pruning. In contrast to magnitude pruning which selects weights that are far from 0, movement pruning retains weights that are moving away from 0.

For more information, we invite you to check out our paper. You can also have a look at this fun Explain Like I'm Five introductory slide deck.

Extreme sparsity and efficient storage

One promise of extreme pruning is to obtain extremely small models that can be easily sent (and stored) on edge devices. By setting weights to 0., we reduce the amount of information we need to store, and thus decreasing the memory size. We are able to obtain extremely sparse fine-pruned models with movement pruning: ~95% of the dense performance with ~5% of total remaining weights in the BERT encoder.

In this notebook, we showcase how we can leverage standard tools that exist out-of-the-box to efficiently store an extremely sparse question answering model (only 6% of total remaining weights in the encoder). We are able to reduce the memory size of the encoder from the 340MB (the orignal dense BERT) to 11MB, without any additional training of the model (every operation is performed post fine-pruning). It is sufficiently small to store it on a 91' floppy disk 📎 !

While movement pruning does not directly optimize for memory footprint (but rather the number of non-null weights), we hypothetize that further memory compression ratios can be achieved with specific quantization aware trainings (see for instance Q8BERT, And the Bit Goes Down or Quant-Noise).

Fine-pruned models

As examples, we release two English PruneBERT checkpoints (models fine-pruned from a pre-trained BERT checkpoint), one on SQuAD and the other on MNLI.

  • prunebert-base-uncased-6-finepruned-w-distil-squad
    Pre-trained BERT-base-uncased fine-pruned with soft movement pruning on SQuAD v1.1. We use an additional distillation signal from BERT-base-uncased finetuned on SQuAD. The encoder counts 6% of total non-null weights and reaches 83.8 F1 score. The model can be accessed with: pruned_bert = BertForQuestionAnswering.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad")
  • prunebert-base-uncased-6-finepruned-w-distil-mnli
    Pre-trained BERT-base-uncased fine-pruned with soft movement pruning on MNLI. We use an additional distillation signal from BERT-base-uncased finetuned on MNLI. The encoder counts 6% of total non-null weights and reaches 80.7 (matched) accuracy. The model can be accessed with: pruned_bert = BertForSequenceClassification.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli")

How to fine-prune?

Setup

The code relies on the 🤗 Transformers library. In addition to the dependencies listed in the examples folder, you should install a few additional dependencies listed in the requirements.txt file: pip install -r requirements.txt.

Note that we built our experiments on top of a stabilized version of the library (commit https://github.com/huggingface/transformers/commit/352d5472b0c1dec0f420d606d16747d851b4bda8): we do not guarantee that everything is still compatible with the latest version of the master branch.

Fine-pruning with movement pruning

Below, we detail how to reproduce the results reported in the paper. We use SQuAD as a running example. Commands (and scripts) can be easily adapted for other tasks.

The following command fine-prunes a pre-trained BERT-base on SQuAD using movement pruning towards 15% of remaining weights (85% sparsity). Note that we freeze all the embeddings modules (from their pre-trained value) and only prune the Fully Connected layers in the encoder (12 layers of Transformer Block).

SERIALIZATION_DIR=<OUTPUT_DIR>
SQUAD_DATA=squad_data

mkdir $SQUAD_DATA
cd $SQUAD_DATA
wget -q https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
wget -q https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json
cd ..


python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \
    --initial_threshold 1 --final_threshold 0.15 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method topK --mask_init constant --mask_scale 0.

Fine-pruning with other methods

We can also explore other fine-pruning methods by changing the pruning_method parameter:

Soft movement pruning

python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \
    --initial_threshold 0 --final_threshold 0.1 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method sigmoied_threshold --mask_init constant --mask_scale 0. \
    --regularization l1 --final_lambda 400.

L0 regularization

python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-1 \
    --initial_threshold 1. --final_threshold 1. \
    --initial_warmup 1 --final_warmup 1 \
    --pruning_method l0 --mask_init constant --mask_scale 2.197 \
    --regularization l0 --final_lambda 125.

Iterative Magnitude Pruning

python examples/movement-pruning/masked_run_squad.py \
    --output_dir ./dbg \
    --data_dir examples/distillation/data/squad_data \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 \
    --initial_threshold 1 --final_threshold 0.15 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method magnitude

After fine-pruning

Counting parameters

Regularization based pruning methods (soft movement pruning and L0 regularization) rely on the penalty to induce sparsity. The multiplicative coefficient controls the sparsity level. To obtain the effective sparsity level in the encoder, we simply count the number of activated (non-null) weights:

python examples/movement-pruning/counts_parameters.py \
    --pruning_method sigmoied_threshold \
    --threshold 0.1 \
    --serialization_dir $SERIALIZATION_DIR

Pruning once for all

Once the model has been fine-pruned, the pruned weights can be set to 0. once for all (reducing the amount of information to store). In our running experiments, we can convert a MaskedBertForQuestionAnswering (a BERT model augmented to enable on-the-fly pruning capabilities) to a standard BertForQuestionAnswering:

python examples/movement-pruning/bertarize.py \
    --pruning_method sigmoied_threshold \
    --threshold 0.1 \
    --model_name_or_path $SERIALIZATION_DIR

Hyper-parameters

For reproducibility purposes, we share the detailed results presented in the paper. These tables exhaustively describe the individual hyper-parameters used for each data point.

Inference speed

Early experiments show that even though models fine-pruned with (soft) movement pruning are extremely sparse, they do not benefit from significant improvement in terms of inference speed when using the standard PyTorch inference. We are currently benchmarking and exploring inference setups specifically for sparse architectures. In particular, hardware manufacturers are announcing devices that will speedup inference for sparse networks considerably.

Citation

If you find this resource useful, please consider citing the following paper:

@article{sanh2020movement,
    title={Movement Pruning: Adaptive Sparsity by Fine-Tuning},
    author={Victor Sanh and Thomas Wolf and Alexander M. Rush},
    year={2020},
    eprint={2005.07683},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Hugging Face
Solving NLP, one commit at a time!
Hugging Face
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021