This repository contains demos I made with the Transformers library by HuggingFace.

Overview

Transformers-Tutorials

Hi there!

This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are implemented in PyTorch.

NOTE: if you are not familiar with HuggingFace and/or Transformers, I highly recommend to check out our free course, which introduces you to several Transformer architectures (such as BERT, GPT-2, T5, BART, etc.), as well as an overview of the HuggingFace libraries, including Transformers, Tokenizers, Datasets, Accelerate and the hub.

Currently, it contains the following demos:

  • BERT (paper):
    • fine-tuning BertForTokenClassification on a named entity recognition (NER) dataset. Open In Colab
    • fine-tuning BertForSequenceClassification for multi-label text classification. Open In Colab
  • CANINE (paper):
    • fine-tuning CanineForSequenceClassification on IMDb Open In Colab
  • DETR (paper):
    • performing inference with DetrForObjectDetection Open In Colab
    • fine-tuning DetrForObjectDetection on a custom object detection dataset Open In Colab
    • evaluating DetrForObjectDetection on the COCO detection 2017 validation set Open In Colab
    • performing inference with DetrForSegmentation Open In Colab
    • fine-tuning DetrForSegmentation on COCO panoptic 2017 Open In Colab
  • GPT-J-6B (repository):
    • performing inference with GPTJForCausalLM to illustrate few-shot learning and code generation Open In Colab
  • ImageGPT (blog post):
    • (un)conditional image generation with ImageGPTForCausalLM Open In Colab
    • linear probing with ImageGPT Open In Colab
  • LayoutLM (paper):
    • fine-tuning LayoutLMForTokenClassification on the FUNSD dataset Open In Colab
    • fine-tuning LayoutLMForSequenceClassification on the RVL-CDIP dataset Open In Colab
    • adding image embeddings to LayoutLM during fine-tuning on the FUNSD dataset Open In Colab
  • LayoutLMv2 (paper):
    • fine-tuning LayoutLMv2ForSequenceClassification on RVL-CDIP Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on FUNSD Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on FUNSD using the 🤗 Trainer Open In Colab
    • performing inference with LayoutLMv2ForTokenClassification on FUNSD Open In Colab
    • true inference with LayoutLMv2ForTokenClassification (when no labels are available) + Gradio demo Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on CORD Open In Colab
    • fine-tuning LayoutLMv2ForQuestionAnswering on DOCVQA Open In Colab
  • LUKE (paper):
    • fine-tuning LukeForEntityPairClassification on a custom relation extraction dataset using PyTorch Lightning Open In Colab
  • SegFormer (paper):
    • performing inference with SegformerForSemanticSegmentation Open In Colab
    • fine-tuning SegformerForSemanticSegmentation on custom data using native PyTorch Open In Colab
  • Perceiver IO (paper):
    • showcasing masked language modeling and image classification with the Perceiver Open In Colab
    • fine-tuning the Perceiver for image classification Open In Colab
    • fine-tuning the Perceiver for text classification Open In Colab
    • predicting optical flow between a pair of images with PerceiverForOpticalFlowOpen In Colab
    • auto-encoding a video (images, audio, labels) with PerceiverForMultimodalAutoencoding Open In Colab
  • T5 (paper):
    • fine-tuning T5ForConditionalGeneration on a Dutch summarization dataset on TPU using HuggingFace Accelerate Open In Colab
    • fine-tuning T5ForConditionalGeneration (CodeT5) for Ruby code summarization using PyTorch Lightning Open In Colab
  • TAPAS (paper):
  • TrOCR (paper):
    • performing inference with TrOCR to illustrate optical character recognition with Transformers, as well as making a Gradio demo Open In Colab
    • fine-tuning TrOCR on the IAM dataset using the Seq2SeqTrainer Open In Colab
    • fine-tuning TrOCR on the IAM dataset using native PyTorch Open In Colab
    • evaluating TrOCR on the IAM test set Open In Colab
  • Vision Transformer (paper):
    • performing inference with ViTForImageClassification Open In Colab
    • fine-tuning ViTForImageClassification on CIFAR-10 using PyTorch Lightning Open In Colab
    • fine-tuning ViTForImageClassification on CIFAR-10 using the 🤗 Trainer Open In Colab

... more to come! 🤗

If you have any questions regarding these demos, feel free to open an issue on this repository.

Btw, I was also the main contributor to add the following algorithms to the library:

  • TAbular PArSing (TAPAS) by Google AI
  • Vision Transformer (ViT) by Google AI
  • Data-efficient Image Transformers (DeiT) by Facebook AI
  • LUKE by Studio Ousia
  • DEtection TRansformers (DETR) by Facebook AI
  • CANINE by Google AI
  • BEiT by Microsoft Research
  • LayoutLMv2 (and LayoutXLM) by Microsoft Research
  • TrOCR by Microsoft Research
  • SegFormer by NVIDIA
  • ImageGPT by OpenAI
  • Perceiver by Deepmind

All of them were an incredible learning experience. I can recommend anyone to contribute an AI algorithm to the library!

Data preprocessing

Regarding preparing your data for a PyTorch model, there are a few options:

  • a native PyTorch dataset + dataloader. This is the standard way to prepare data for a PyTorch model, namely by subclassing torch.utils.data.Dataset, and then a creating corresponding DataLoader (which is a Python generator that allows to loop over the items of a dataset). When subclassing the Dataset class, one needs to implement 3 methods: __init__, __len__ (which returns the number of examples of the dataset) and __getitem__ (which returns an example of the dataset, given an integer index). Here's an example of creating a basic text classification dataset (assuming one has a CSV that contains 2 columns, namely "text" and "label"):
from torch.utils.data import Dataset

class CustomTrainDataset(Dataset):
    def __init__(self, df, tokenizer):
        self.df = df
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        # get item
        item = df.iloc[idx]
        text = item['text']
        label = item['label']
        # encode text
        encoding = self.tokenizer(text, padding="max_length", max_length=128, truncation=True, return_tensors="pt")
        # remove batch dimension which the tokenizer automatically adds
        encoding = {k:v.squeeze() for k,v in encoding.items()}
        # add label
        encoding["label"] = torch.tensor(label)
        
        return encoding

Instantiating the dataset then happens as follows:

from transformers import BertTokenizer
import pandas as pd

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
df = pd.read_csv("path_to_your_csv")

train_dataset = CustomTrainDataset(df=df tokenizer=tokenizer)

Accessing the first example of the dataset can then be done as follows:

encoding = train_dataset[0]

In practice, one creates a corresponding DataLoader, that allows to get batches from the dataset:

from torch.utils.data import DataLoader

train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True)

I often check whether the data is created correctly by fetching the first batch from the data loader, and then printing out the shapes of the tensors, decoding the input_ids back to text, etc.

batch = next(iter(train_dataloader))
for k,v in batch.items():
    print(k, v.shape)
# decode the input_ids of the first example of the batch
print(tokenizer.decode(batch['input_ids'][0].tolist())
  • HuggingFace Datasets. Datasets is a library by HuggingFace that allows to easily load and process data in a very fast and memory-efficient way. It is backed by Apache Arrow, and has cool features such as memory-mapping, which allow you to only load data into RAM when it is required. It only has deep interoperability with the HuggingFace hub, allowing to easily load well-known datasets as well as share your own with the community.

Loading a custom dataset as a Dataset object can be done as follows (you can install datasets using pip install datasets):

from datasets import load_dataset

dataset = load_dataset('csv', data_files={'train': ['my_train_file_1.csv', 'my_train_file_2.csv'] 'test': 'my_test_file.csv'})

Here I'm loading local CSV files, but there are other formats supported (including JSON, Parquet, txt) as well as loading data from a local Pandas dataframe or dictionary for instance. You can check out the docs for all details.

Training frameworks

Regarding fine-tuning Transformer models (or more generally, PyTorch models), there are a few options:

  • using native PyTorch. This is the most basic way to train a model, and requires the user to manually write the training loop. The advantage is that this is very easy to debug. The disadvantage is that one needs to implement training him/herself, such as setting the model in the appropriate mode (model.train()/model.eval()), handle device placement (model.to(device)), etc. A typical training loop in PyTorch looks as follows (inspired by this great PyTorch intro tutorial):
import torch

model = ...

# I almost always use a learning rate of 5e-5 when fine-tuning Transformer based models
optimizer = torch.optim.Adam(model.parameters(), lr=5-e5)

# put model on GPU, if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(epochs):
    model.train()
    train_loss = 0.0
    for batch in train_dataloader:
        # put batch on device
        batch = {k:v.to(device) for k,v in batch.items()}
        
        # forward pass
        outputs = model(**batch)
        loss = outputs.loss
        
        train_loss += loss.item()
        
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

    print("Loss after epoch {epoch}:", train_loss/len(train_dataloader))
    
    model.eval()
    val_loss = 0.0
    with torch.no_grad():
        for batch in eval_dataloader:
            # put batch on device
            batch = {k:v.to(device) for k,v in batch.items()}
            
            # forward pass
            outputs = model(**batch)
            loss = outputs.logits
            
            val_loss += loss.item()
                  
    print("Validation loss after epoch {epoch}:", val_loss/len(eval_dataloader))
  • PyTorch Lightning (PL). PyTorch Lightning is a framework that automates the training loop written above, by abstracting it away in a Trainer object. Users don't need to write the training loop themselves anymore, instead they can just do trainer = Trainer() and then trainer.fit(model). The advantage is that you can start training models very quickly (hence the name lightning), as all training-related code is handled by the Trainer object. The disadvantage is that it may be more difficult to debug your model, as the training and evaluation is now abstracted away.
  • HuggingFace Trainer. The HuggingFace Trainer API can be seen as a framework similar to PyTorch Lightning in the sense that it also abstracts the training away using a Trainer object. However, contrary to PyTorch Lightning, it is not meant not be a general framework. Rather, it is made especially for fine-tuning Transformer-based models available in the HuggingFace Transformers library. The Trainer also has an extension called Seq2SeqTrainer for encoder-decoder models, such as BART, T5 and the EncoderDecoderModel classes. Note that all PyTorch example scripts of the Transformers library make use of the Trainer.
  • HuggingFace Accelerate: Accelerate is a new project, that is made for people who still want to write their own training loop (as shown above), but would like to make it work automatically irregardless of the hardware (i.e. multiple GPUs, TPU pods, mixed precision, etc.).
Owner
ML @HuggingFace. Interested in deep learning, NLP. Contributed TAPAS, ViT, DeiT, LUKE, DETR, CANINE to HuggingFace Transformers
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022