A practical ML pipeline for data labeling with experiment tracking using DVC.

Overview

Auto Label Pipeline

A practical ML pipeline for data labeling with experiment tracking using DVC

Goals:

  • Demonstrate reproducible ML
  • Use DVC to build a pipeline and track experiments
  • Automatically clean noisy data labels using Cleanlab cross validation
  • Determine which FastText subword embedding performs better for semi-supervised cluster classification
  • Determine optimal hyperparameters through experiment tracking
  • Prepare casually labeled data for human evaluation

Demo: View Experiments recorded in git branches:

asciicast

The Data

For our working demo, we will purify some of the slightly noisy/dirty labels found in Wikidata people entries for attributes for Employers and Occupations. Our initial data labels have been harvested from a json dump of Wikidata, the Kensho Wikidata dataset, and this notebook script for extracting the data.

Data Input Format

Tab separated CSV files, with the fields:

  • text_data - the item that is to be labeled (single word or short group of words)
  • class_type - the class label
  • context - any text that surrounds the text_data field in situ, or defines the text_data item in other words.
  • count - the number of occurrences of this label; how common it appears in the existing data.

Data Output format

  • (same parameters as the data input plus)
  • date_updated - when the label was updated
  • previous_class_type - the previous class_type label
  • mislabeled_rank - records how low the confidence was prior to a re-label

The Pipeline

  • Fetch
  • Prepare
  • Train
  • Relabel

For details, see the README in the src folder. The pipeline is orchestrated via the dvc.yaml file, and parameterized via params.yaml.

Using/Extending the pipeline

  1. Drop your own CSV files into the data/raw directory
  2. Run the pipeline
  3. Tune settings, embeddings, etc, until no longer amused
  4. Verify your results manually and by submitting data/final/data.csv for human evaluation, using random sampling and drawing heavily from the mislabeled_rank entries.

Project Structure

├── LICENSE
├── README.md
├── data                    # <-- Directory with all types of data
│ ├── final                 # <-- Directory with final data
│ │ ├── class.metrics.csv   # <-- Directory with raw and intermediate data
│ │ └── data.csv            # <-- Pipeline output (not stored in git)
│ ├── interim               # <-- Directory with temporary data
│ │ ├── datafile.0.csv
│ │ └── datafile.1.csv
│ ├── prepared              # <-- Directory with prepared data
│ │ └── data.all.csv
│ └── raw                   # <-- Directory with raw data; populated by pipeline's fetch stage
│     ├── README.md
│     ├── cc.en.300.bin               # <-- Fasttext binary model file, creative commons 
│     ├── crawl-300d-2M-subword.bin   # <-- Fasttext binary model file, common crawl
│     ├── crawl-300d-2M-subword.vec
│     ├── employers.wikidata.csv      # <-- Our initial data, 1 set of class labels 
│     ├── lid.176.ftz
│     └── occupations.wikidata.csv    # <-- Our initial data, 1 set of class labels
├── dvc.lock                # <-- DVC internal state tracking file
├── dvc.yaml                # <-- DVC project configuration file
├── dvc_plots               # <-- Temp directory for DVC plots; not tracked by git
│ └── README.md
├── model
│ ├── class.metrics.csv
│ ├── svm.model.pkl
│ └── train.metrics.json    # <-- Metrics from the pipeline's train stage  
├── mypy.ini
├── params.yaml             # <-- Parameter configuration file for the pipeline
├── reports                 # <-- Directory with metrics output
│ ├── prepare.metrics.json  
│ └── relabel.metrics.json
├── requirements-dev.txt
├── requirements.txt
├── runUnitTests.sh
└── src                     # <-- Directory containing the pipeline's code
    ├── README.md
    ├── fetch.py
    ├── prepare.py
    ├── relabel.py
    ├── train.py
    └── utils.py

Setup

Create environment

conda create --name auto-label-pipeline python=3.9

conda activate auto-label-pipeline

Install requirements

pip install -r requirements.txt

If you're going to modify the source, also install the requirements-dev.txt file


Reproduce the pipeline results locally

dvc repro

View Metrics

dvc metrics show

See also: DVC metrics

Working with Experiments

To see your local experiments:

dvc exp show

Experiments that have been turned into a branches can be referenced directly in commands:

dvc exp diff svc_linear_ex svc_rbf_ex

e.g. to compare experiments:

dvc exp diff [experiment branch name] [experiment branch 2 name]

e.g.:

dvc exp diff svc_linear_ex svc_rbf_ex

dvc exp diff svc_poly_ex svc_rbf_ex

To create an experiment by changing a parameter:

dvc exp run --set-param train.split=0.9 --name my_split_ex

(When promoting an experiment to a branch, DVC does not switch into the branch.)

To save and share your experiment in a branch:

dvc exp branch my_split_ex my_split_ex_branch

See also: DVC Experiments

View plots

Initial Confusion matrix:

dvc plots show model/class.metrics.csv -x actual -y predicted --template confusion

Confusion matrix after relabeling:

dvc plots show data/final/class.metrics.csv -x actual -y predicted --template confusion

See also: DVC plots


Conclusions

  • For relabeling and cleaning, it's important to have more than two labels, and to specifying an UNK label for: unknown; labels spanning multiple groups; or low confidence support.
  • Standardizing the input data formats allow users to flexibly use many different data sources.
  • Language detection is an important part of data cleaning, however problematic because:
    • Modern languages sometimes "borrow" words from other languages (but not just any words!)
    • Language detection models perform inference poorly with limited data, especially just a single word.
    • Normalization utilities, such as unidecode aren't helpful; (the wrong word in more readable letters is still the wrong word).
  • Experimentation parameters often have co-dependencies that would make a simple combinatorial grid search inefficient.

Recommended readings:

  • Confident Learning: Estimating Uncertainty in Dataset Labels by Curtis G. Northcutt, Lu Jiang, Isaac L. Chuang, 31 Oct 2019, arxiv
  • A Simple but tough-to-beat baseline for sentence embeddings by Sanjeev Arora, Yingyu Liang, Tengyu Ma, ICLR 2017, paper
  • Support Vector Clustering by Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik, November 2001 Journal of Machine Learning Research 2 (12):125-137, DOI:10.1162/15324430260185565, paper
  • SVM clustering by Winters-Hilt, S., Merat, S. BMC Bioinformatics 8, S18 (2007). link, paper

Note: this repo layout borrows heavily from the Cookie Cutter Data Science Layout If you're not familiar with it, please check it out.

Owner
Todd Cook
Software craftsman
Todd Cook
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023