Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

Overview

pair-emnlp2020

Official repository for the paper:

Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation

If you find our work useful, please cite:

@inproceedings{hua-wang-2020-pair,
    title = "PAIR: Planning and Iterative Refinement in Pre-trained Transformersfor Long Text Generation",
    author = "Hua, Xinyu  and
      Wang, Lu",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
}

Requirements

  • Python 3.7
  • PyTorch 1.4.0
  • PyTorchLightning 0.9.0
  • transformers 3.3.0
  • numpy
  • tqdm
  • pycorenlp (for preprocessing nytimes data)
  • nltk (for preprocessing nytimes data)

Data

We release the data sets in the following link(1.2G uncompressed) Please download and uncompress the file, and put under ./data directory. For opinion and news domains, the The New York Times Annotated Corpus is licensed by LDC. We therefore only provide the ids for train/dev/test. Please follow the instructions to generate the dataset.

Text Planning

To train a BERT planner:

cd planning
python train.py \
    --data-path=../data/ \
    --domain=[arggen,opinion,news] \
    --exp-name=demo \
    --save-interval=1 \ # how frequent to save checkpoints 
    --max-epoch=30 \
    --lr=5e-4 \
    --warmup-updates=5000 \
    --train-set=train \
    --valid-set=dev \
    --tensorboard-logdir=tboard/ \
    --predict-keyphrase-offset \
    --max-samples=32 \ # max number of samples per batch
    [--quiet] \ # whether to print intermediate information

The checkpoints will be dumped to checkpoints/planning/[domain]/[exp-name]. Tensorboard will be available under planning/tboard/.

To run inference using a trained model, with greedy decoding:

cd planning
python decode.py \
    --data-path=../data/ \
    --domain=arggen \
    --test-set=test \
    --max-samples=32 \
    --predict-keyphrase-offset \
    --exp-name=demo \
    [--quiet]

The results will be saved to planning/output/.

Iterative Refinement

We provide implementations for four different setups:

  • Seq2seq: prompt -> tgt
  • KPSeq2seq: prompt + kp-set -> tgt
  • PAIR-light: prompt + kp-plan + masks -> tgt
  • PAIR-full: prompt + kp-plan + template -> tgt

To train a model:

cd refinement
python train.py \
    --domain=[arggen,opinion,news] \
    --setup=[seq2seq,kpseq2seq,pair-light,pair-full] \
    --train-set=train \
    --valid-set=dev \
    --train-batch-size=10 \
    --valid-batch-size=5 \
    --num-train-epochs=20 \
    --ckpt-dir=../checkpoints/[domain]/[setup]/demo \
    --tensorboard-dir=demo \
    [--quiet]

To run iterative refinement:

cd refinement
python generate.py \
    --domain=[arggen,opinion,news] \
    --setup=[seq2seq,kpseq2seq,pair-light,pair-full] \
    --test-set=test \
    --output-name=test_demo \
    --enforce-template-strategy=flexible \
    --do-sampling \
    --sampling-topk=100 \
    --sampling-topp=0.9 \
    --sample-times=3 \
    --ckpt-dir=../checkpoints/[domain]/[setup]/demo

Contact

Xinyu Hua (hua.x [at] northeastern.edu)

License

See the LICENSE file for details.

Owner
Xinyu Hua
PhD student at Northeastern University
Xinyu Hua
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021