Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Related tags

Deep Learningproxprop
Overview

Proximal Backpropagation

Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient steps to update the network parameters. We have analyzed this algorithm in our ICLR 2018 paper:

Proximal Backpropagation (Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers; ICLR 2018) [https://arxiv.org/abs/1706.04638]

tl;dr

  • We provide a PyTorch implementation of ProxProp for Python 3 and PyTorch 1.0.1.
  • The results of our paper can be reproduced by executing the script paper_experiments.sh.
  • ProxProp is implemented as a torch.nn.Module (a 'layer') and can be combined with any other layer and first-order optimizer. While a ProxPropConv2d and a ProxPropLinear layer already exist, you can generate a ProxProp layer for your favorite linear layer with one line of code.

Installation

  1. Make sure you have a running Python 3 (tested with Python 3.7) ecosytem. We recommend that you use a conda install, as this is also the recommended option to get the latest PyTorch running. For this README and for the scripts, we assume that you have conda running with Python 3.7.
  2. Clone this repository and switch to the directory.
  3. Install the dependencies via conda install --file conda_requirements.txt and pip install -r pip_requirements.txt.
  4. Install PyTorch with magma support. We have tested our code with PyTorch 1.0.1 and CUDA 10.0. You can install this setup via
    conda install -c pytorch magma-cuda100
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  5. (optional, but necessary to reproduce paper experiments) Download the CIFAR-10 dataset by executing get_data.sh

Training neural networks with ProxProp

ProxProp is implemented as a custom linear layer (torch.nn.Module) with its own backward pass to take implicit gradient steps on the network parameters. With this design choice it can be combined with any other layer, for which one takes explicit gradient steps. Furthermore, the resulting update direction can be used with any first-order optimizer that expects a suitable update direction in parameter space. In our paper we prove that ProxProp generates a descent direction and show experiments with Nesterov SGD and Adam.

You can use our pre-defined layers ProxPropConv2d and ProxPropLinear, corresponding to nn.Conv2d and nn.Linear, by importing

from ProxProp import ProxPropConv2d, ProxPropLinear

Besides the usual layer parameters, as detailed in the PyTorch docs, you can provide:

  • tau_prox: step size for a proximal step; default is tau_prox=1
  • optimization_mode: can be one of 'prox_exact', 'prox_cg{N}', 'gradient' for an exact proximal step, an approximate proximal step with N conjugate gradient steps and an explicit gradient step, respectively; default is optimization_mode='prox_cg1'. The 'gradient' mode is for a fair comparison with SGD, as it incurs the same overhead as the other methods in exploiting a generic implementation with the provided PyTorch API.

If you want to use ProxProp to optimize your favorite linear layer, you can generate the respective module with one line of code. As an example for the the Conv3d layer:

from ProxProp import proxprop_module_generator
ProxPropConv3d = proxprop_module_generator(torch.nn.Conv3d)

This gives you a default implementation for the approximate conjugate gradient solver, which treats all parameters as a stacked vector. If you want to use the exact solver or want to use the conjugate gradient solver more efficiently, you have to provide the respective reshaping methods to proxprop_module_generator, as this requires specific knowledge of the layer's structure and cannot be implemented generically. As a template, take a look at the ProxProp.py file, where we have done this for the ProxPropLinear layer.

By reusing the forward/backward implementations of existing PyTorch modules, ProxProp becomes readily accessible. However, we pay an overhead associated with generically constructing the backward pass using the PyTorch API. We have intentionally sided with genericity over speed.

Reproduce paper experiments

To reproduce the paper experiments execute the script paper_experiments.sh. This will run our paper's experiments, store the results in the directory paper_experiments/ and subsequently compile the results into the file paper_plots.pdf. We use an NVIDIA Titan X GPU; executing the script takes roughly 3 hours.

Acknowledgement

We want to thank Soumith Chintala for helping us track down a mysterious bug and the whole PyTorch dev team for their continued development effort and great support to the community.

Publication

If you use ProxProp, please acknowledge our paper by citing

@article{Frerix-et-al-18,
    title = {Proximal Backpropagation},
    author={Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers},
    journal={International Conference on Learning Representations},
    year={2018},
    url = {https://arxiv.org/abs/1706.04638}
}
Owner
Thomas Frerix
Thomas Frerix
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023