Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Overview

Storium GPT-2 Models

This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation]. It has all the code necessary to reproduce the models and analysis from the paper.

Overview

A high-level outline of our dataset and platform. In this example from a real STORIUM game, the character ADIRA MAKAROVA uses the strength card DEADLY AIM to DISRUPT THE GERMANS, a challenge card. Our model conditions on the natural language annotations in the scene intro, challenge card, strength card, and character, along with the text of the previous scene entry (not shown) to generate a suggested story continuation. Players may then edit the model output, by adding or deleting text, before publishing the entry. We collect these edits, using the matched text as the basis of our USER metric. New models can be added to the platform by simply implementing four methods: startup, shutdown, preprocess, and generate.

Deployment

This repository contains the code that makes our GPT-2 story generation models deployable on our evaluation platform, so it serves as a great template for how to structure your code. Please see the file figmentate.py for the simple API required for making your model deployable on our platform. You will also need to provide a json file with any properties needed to pass to your startup method. See for example the properties below:

{
  "scene_entry":
  {
    "properties": {
      "checkpoint_path": "/var/lib/figmentator/checkpoint",
      "sample": {
	"top_p": 0.9,
	"temperature": 0.9,
	"repetition_penalty": 1.2
      }
    },
    "requires": ["torch==1.3.0", "transformers==2.2.0", "kiwisolver==1.1.0"],
    "cls": "model=figmentate:GPT2Figmentator"
  }
}

The key scene_entry defines the type of model being created. Currently, we only support models that generate the text of a scene entry, though we might support other types of prediction models in the future, like suggesting cards or narrator actions.

The properties object will be passed to your startup method. It allows for defining any parameters needed for sampling from your model.

The requires list, is simply a list of python packages that need to be installed for your model to run. These will be automatically installed when your model is deployed. If you notice, we specify the deep learning package torch as a requirement. That's because our code is agnostic to the underlying deep learning framework being used by your model. That means it should support models using other frameworks like tensorflow or jax.

Finally, the cls string is the class that wraps your model. It is specified using Python's entry points syntax.

Cite

@inproceedings{akoury2020storium,
  Author = {Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng and Mohit Iyyer},
  Booktitle = {Empirical Methods for Natural Language Processing},
  Year = "2020",
  Title = {{STORIUM}: {A} {D}ataset and {E}valuation {P}latform for {S}tory {G}eneration}
}
Owner
Nader Akoury
CS PhD Student
Nader Akoury
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022