Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Related tags

Deep LearningGDWS
Overview

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

This repository contains the code and pre-trained models for our paper Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks by Hassan Dbouk and Naresh R. Shanbhag (NeurIPS 2021 Spotlight).

What is GDWS?

Generalized Depthwise-Separable (GDWS) convolutions, as the name suggests, generalize the popular DWS convolutions by allowing for more than one depthwise kernel per input channel as seen below. In our work, we provide efficient and theoretically optimal approximation algorithms that allow us to approximate any standard 2D convolution with a GDWS one. Doing so, we can construct GDWS networks from pre-adversarially trained CNNs in order to dramatically improve the real hardware FPS (measured on an NVIDIA Jetson Xavier) while preserving their robust accuracy. Furthermore, GDWS easily scales to large problem sizes since it operates on pre-trained models and doesn't require any additional training.

Performance Summary

Recent robust pruning works HYDRA and ADMM achieve high compression ratios but either fail to achieve high FPS measured on an NVIDIA Jetson Xavier or compromise significantly on robustness. Furthermore, the overreliance of current robust complexity reduction techniques on adversarial training (AT) increases their training time significantly as shown below. Thus, there is critical need for methods to design deep nets that are both adversarially robust and achieve high throughput when mapped to real hardware. To that end, we:

  • propose GDWS, a novel convolutional structure that can be seamlessly mapped onto off-the-shelf hardware and accelerate pre-trained CNNs significantly while maintaining robust accuracy.
  • show that the error-optimal and complexity-optimal GDWS approximations of any pre-trained standard 2D convolution can be obtained via greedy polynomial time algorithms, thus eliminating the need for any expensive training.
  • apply GDWS to a variety of networks on CIFAR-10, SVHN, and ImageNet to simultaneously achieve higher robustness and higher FPS than existing robust complexity reduction techniques, while incurring no extra training cost.
  • perform thorough experiments using four network architectures on CIFAR-10, SVHN, and Imagenet, and demonstrate the effectiveness of GDWS as it outperforms existing techniques in terms of robustness and throughput (measured in FPS). We also show that model compression is not always the answer when high throughput is required.
  • demonstrate the versatility of GDWS by using it to design efficient CNNs that are robust to union of (l,l2,l1) perturbation models. To the best of our knowledge, this is the first work that proposes efficient and robust networks to the union of norm-bounded perturbation models.

What is in this Repo?

We provide a PyTorch implementation of our GDWS convolutions and our optimal approximation algorithms MEGO and LEGO (algorithms 1 & 2 from our paper). We also provide a modified script from this repo for computing the per-layer weight error vectors alpha (equation (8) from our paper). The code provided can be used to approximate any pre-trained CNN via GDWS convolutions and evaluate its robustness against l-bounded perturbations via eval_robustness.py.

Example

This code was run with the following dependencies, make sure you have the appropriate versions downloaded and installed properly.

python 3.6.9
pytorch 1.0.0
numpy 1.18.1
torchvision 0.2.1
  1. clone the repo: git clone https://github.com/hsndbk4/GDWS.git
  2. make sure the appropriate dataset folders are setup properly (check get_dataloaders in datasets.py)
  3. download a pre-trained pre-activation resnet-18 on CIFAR-10 and its pre-computed weight error vectors alpha from here
  4. place both files in an appropriate folder in the root directory, e.g. outdir_cifar10/preactresnet18

We are now set to run some scripts. First, let us check the natural and robust accuracies of our pre-trained baselines by running the following two commands:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_base.txt
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_base.txt

The accuracy numbers will be stored in the appropriate text files in the same folder. Similarly, let us replace the convolutional layers with GDWS ones, using the LEGO algorithm with beta=0.005, and evaluate both the natural and robust accuracies:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005

Citation

If you find our work helpful, please consider citing it.

@article{dbouk2021generalized,
  title={Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks},
  author={Dbouk, Hassan and Shanbhag, Naresh R.},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Acknowledgements

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and the Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).

Parts of the code in this repository are based on following awesome public repositories:

Owner
Hassan Dbouk
Hassan Dbouk
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022