Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Related tags

Deep LearningGDWS
Overview

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

This repository contains the code and pre-trained models for our paper Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks by Hassan Dbouk and Naresh R. Shanbhag (NeurIPS 2021 Spotlight).

What is GDWS?

Generalized Depthwise-Separable (GDWS) convolutions, as the name suggests, generalize the popular DWS convolutions by allowing for more than one depthwise kernel per input channel as seen below. In our work, we provide efficient and theoretically optimal approximation algorithms that allow us to approximate any standard 2D convolution with a GDWS one. Doing so, we can construct GDWS networks from pre-adversarially trained CNNs in order to dramatically improve the real hardware FPS (measured on an NVIDIA Jetson Xavier) while preserving their robust accuracy. Furthermore, GDWS easily scales to large problem sizes since it operates on pre-trained models and doesn't require any additional training.

Performance Summary

Recent robust pruning works HYDRA and ADMM achieve high compression ratios but either fail to achieve high FPS measured on an NVIDIA Jetson Xavier or compromise significantly on robustness. Furthermore, the overreliance of current robust complexity reduction techniques on adversarial training (AT) increases their training time significantly as shown below. Thus, there is critical need for methods to design deep nets that are both adversarially robust and achieve high throughput when mapped to real hardware. To that end, we:

  • propose GDWS, a novel convolutional structure that can be seamlessly mapped onto off-the-shelf hardware and accelerate pre-trained CNNs significantly while maintaining robust accuracy.
  • show that the error-optimal and complexity-optimal GDWS approximations of any pre-trained standard 2D convolution can be obtained via greedy polynomial time algorithms, thus eliminating the need for any expensive training.
  • apply GDWS to a variety of networks on CIFAR-10, SVHN, and ImageNet to simultaneously achieve higher robustness and higher FPS than existing robust complexity reduction techniques, while incurring no extra training cost.
  • perform thorough experiments using four network architectures on CIFAR-10, SVHN, and Imagenet, and demonstrate the effectiveness of GDWS as it outperforms existing techniques in terms of robustness and throughput (measured in FPS). We also show that model compression is not always the answer when high throughput is required.
  • demonstrate the versatility of GDWS by using it to design efficient CNNs that are robust to union of (l,l2,l1) perturbation models. To the best of our knowledge, this is the first work that proposes efficient and robust networks to the union of norm-bounded perturbation models.

What is in this Repo?

We provide a PyTorch implementation of our GDWS convolutions and our optimal approximation algorithms MEGO and LEGO (algorithms 1 & 2 from our paper). We also provide a modified script from this repo for computing the per-layer weight error vectors alpha (equation (8) from our paper). The code provided can be used to approximate any pre-trained CNN via GDWS convolutions and evaluate its robustness against l-bounded perturbations via eval_robustness.py.

Example

This code was run with the following dependencies, make sure you have the appropriate versions downloaded and installed properly.

python 3.6.9
pytorch 1.0.0
numpy 1.18.1
torchvision 0.2.1
  1. clone the repo: git clone https://github.com/hsndbk4/GDWS.git
  2. make sure the appropriate dataset folders are setup properly (check get_dataloaders in datasets.py)
  3. download a pre-trained pre-activation resnet-18 on CIFAR-10 and its pre-computed weight error vectors alpha from here
  4. place both files in an appropriate folder in the root directory, e.g. outdir_cifar10/preactresnet18

We are now set to run some scripts. First, let us check the natural and robust accuracies of our pre-trained baselines by running the following two commands:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_base.txt
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_base.txt

The accuracy numbers will be stored in the appropriate text files in the same folder. Similarly, let us replace the convolutional layers with GDWS ones, using the LEGO algorithm with beta=0.005, and evaluate both the natural and robust accuracies:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005

Citation

If you find our work helpful, please consider citing it.

@article{dbouk2021generalized,
  title={Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks},
  author={Dbouk, Hassan and Shanbhag, Naresh R.},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Acknowledgements

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and the Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).

Parts of the code in this repository are based on following awesome public repositories:

Owner
Hassan Dbouk
Hassan Dbouk
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022