Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Overview

Task-aware Joint CWS and POS (TCwsPos)

This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chinese University of Hong Kong (Shenzhen).

Please contact us at {pengsong,leqitian}@link.cuhk.edu.cn if you have any question.

Requirements

Our code works with the following environment.

  • python=3.6
  • pytorch=1.1

Downloading BERT

In our paper, we use BERT (paper) as the encoder.

For BERT, please download pre-trained BERT-Base Chinese from Google or from HuggingFace. If you download it from Google, you need to convert the model from TensorFlow version to PyTorch version.

Running on Sample Data

Run run_sample.sh to train a model on the small sample data under the sample_data folder.

Datasets

We use Universal Dependencies 2.4 (UD) in our paper.

To obtain and pre-process the data, you can go to data_preprocessing directory and run getdata.sh. This script will download and process the official data from UD.

All processed data will appear in data directory organized by the datasets, where each of them contains the files with the same file names under the sample_data directory.

Training and Testing

You can find the command lines to train and test model on a specific dataset in run.sh.

Here are some important parameters:

  • --do_train: train the model
  • --do_test: test the model
  • --use_bert: use BERT as encoder
  • --bert_model: the directory of pre-trained BERT model
  • --model_name: the name of model to save

Predicting

run_sample.sh contains the command line to segment and tag the sentences in an input file (./sample_data/sentence.txt).

Here are some important parameters:

  • --do_predict: segment and tag the sentences using a pre-trained TCwsPos model.
  • --input_file: the file contains sentences to be segmented and tagged. Each line contains one sentence; you can refer to a sample input file for the input format.
  • --output_file: the path of the output file. Words are segmented by a space; POS labels are attached to the resulting words by an underline ("_").
  • --eval_model: the pre-trained WMSeg model to be used to segment the sentences in the input file.

To-do List

  • Regular maintenance

You can leave comments in the Issues section, if you want us to implement any functions.

Owner
Peng
Peng
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022