Repository to run object detection on a model trained on an autonomous driving dataset.

Overview

Autonomous Driving Object Detection on the Raspberry Pi 4

Description of Repository

This repository contains code and instructions to configure the necessary hardware and software for running autonomous driving object detection on the Raspberry Pi 4!

Details of Software and Neural Network Model for Object Detection:

  • Language: Python
  • Framework: TensorFlow Lite
  • Network: SSD MobileNet-V2
  • Training Dataset:Berkely Deep Drive (BBD100K)

The motivation for the Project

The goal of this project was to train a neural network to detect things on the road that an autonomous driving vehicle would see (eg. bus, traffic light, traffic sign, person, bike, truck, motor, car, train, rider). Then to test the trained network on lightweight hardware (i.e. Raspberry PI 4) to see how it performs in terms of processing speed and detection accuracy.

Additional Resources

Source

Reference for Source Code for the Project: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md

Special thanks to Evan from EdjeElectronics for the instructions and the majority of the code used in this project! :)

Results

Vehicle Testing Configuration

Core

  • Raspberry Pi 4 GB
  • Raspberry Pi 5MP Camera (rev 1.3)

Other

  • LED
  • 470 Ohm Resistor
  • Small breadboard
  • GPIO push button
  • 3.5 Amp USB-C Power Supply

This tissue box setup isn't the greatest, but it's what I used to mount the PI on the dashboard of my car. I then used the USB-C cable plugged into the AC outlet of my car while I drove around to record and process footage.

Issues

1.) If you get an error when trying to run the program showing the following:

ImportError: No module named cv2

Try using this tutorial to install and build opencv: https://pimylifeup.com/raspberry-pi-opencv/ The software setup steps should install OpenCV, but sometimes installing it on the Raspberry Pi can be finicky.

Setting Up Software

1.) Clone Repository:

git clone https://github.com/ecd1012/rpi_road_object_detection.git

2.) Change directory to source code:

cd rpi_road_object_detection

3.) Open command prompt and make sure pi is up to date:

sudo apt-get update && sudo apt-get upgrade

4.) Install virtual environment:

sudo pip3 install virtualenv

5.) Make virtual environment:

python3.7 -m venv TFLite-venv

6.) Activate Environment:

source TFLite-venv/bin/activate

7.) Install the dependencies:

bash get_py_requirements.sh

8.) Make sure the camera module is enabled:

sudo raspi-config

9.) Go to Intercae Options and make sure the Pi Camera is enabled.

Setting Up Hardware

10.) Connect a push button to GPIO pin 17. This will be used as input.

Help: https://www.youtube.com/watch?v=BWYy3qZ315U&ab_channel=O%27Reilly

11.) Connect an LED to GPIO PIN 4. This LED will turn on to indicate when the program is running. Make sure you use a resistor with the LED!

Help: https://www.youtube.com/watch?v=3TDJ4FmtGgk&ab_channel=O%27Reilly

12.) Connect Pi Camera Module to Raspberry Pi. Help: https://www.youtube.com/watch?v=0hrF8Wq8SSQ&ab_channel=BINARYUPDATES

Running Detection

15.) After all your hardware and software is configured correctly run the following command:

python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Where the --output_path you specify is where you want images saved.

16.) The script will start running and wait for you to press the GPIO input button to start processing the video feed from the camera. Once you press the button, the green LED will turn on and the pi will start feeding and processing the video stream through the neural network. Processed images will be saved to the '--output_path' you specified over the command line.

17.) If you like, make a video out of the images. You can do this with gif making software, video making software, or ffmpeg. Help: https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg

18.) Enjoy!! :)

Running on Boot

19.) If you want to start running the python script on boot, do the following:

nano ~/.bashrc

And add the following to the end of your .bashrc

#Change directories to where you cloned the repo
cd ~/rpi_road_object_detection
source TFLite-venv/bin/activate
python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Then press CTRL+X and Press Y and enter to save.

Owner
Ethan
Personal Site: https://ethandell.tech/
Ethan
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022