Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

Related tags

Deep Learninglila
Overview

LILA

LILA: Language-Informed Latent Actions

Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assistive teleoperation.

This code bundles code that can be deployed on a Franka Emika Panda Arm, including utilities for processing collected demonstrations (you can find our actual demo data in the data/ directory!), training various LILA and Imitation Learning models, and running live studies.


Quickstart

Assumes lila is the current working directory! This repository also comes with out-of-the-box linting and strict pre-commit checking... should you wish to turn off this functionality you can omit the pre-commit install lines below. If you do choose to use these features, you can run make autoformat to automatically clean code, and make check to identify any violations.

Repository Structure

High-level overview of repository file-tree:

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for running on CPU. Other architectures/CUDA toolkit environments can be added here as necessary.
  • robot/ - Core libfranka robot control code -- simple joint velocity controll w/ Gripper control.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code for creating Torch Datasets for Training LILA/Imitation Models.
    • models/ - Lightning Modules for LILA-FiLM and Imitation-FiLM Architectures.
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Run this first, pointing it at the appropriate configuration in conf/!.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).+ README.md - You are here!
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License.

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

conda env create -f environments/environment-cpu.yaml
conda activate lila
pre-commit install

GPU Development - Linux w/ CUDA 11.0

conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate lila
pre-commit install

Note: This codebase should work naively for all PyTorch > 1.7, and any CUDA version; if you run into trouble building this repository, please file an issue!


Training LILA or Imitation Models

To train models using the already collected demonstrations.

# LILA
python train.py --config conf/lila-config.yaml

# No-Language Latent Actions
python train.py --config conf/no-lang-config.yaml

# Imitatation Learning (Behavioral Cloning w/ DART-style Augmentation)
python train.py --config conf/imitation-config.yaml

This will dump models to runs/{lila-final, no-lang-final, imitation-final}/. These paths are hard-coded in the respective teleoperation/execution files below; if you change these paths, be sure to change the below files as well!

Teleoperating with LILA or End-Effector Control

First, make sure to add the custom Velocity Controller written for the Franka Emika Panda Robot Arm (written using Libfranka) to ~/libfranka/examples on your robot control box. The controller can be found in robot/libfranka/lilaVelocityController.cpp.

Then, make sure to update the path of the model trained in the previous step (for LILA) in teleoperate.py. Finally, you can drop into controlling the robot with a LILA model (and Joystick - make sure it's plugged in!) with:

# LILA Control
python teleoperate.py

# For No-Language Control, just change the arch!
python teleoperate.py --arch no-lang

# Pure End-Effector Control is also implemented by Default
python teleoperate.py --arch endeff

Running Imitation Learning

Add the Velocity Controller as described above. Then, make sure to update the path to the trained model in imitate.py and run the following:

python imitate.py

Collecting Kinesthetic Demonstrations

Each lab (and corresponding robot) is built with a different stack, and different preferred ways of recording Kinesthetic demonstrations. We have a rudimentary script record.py that shows how we do this using sockets, and the default libfranka readState.cpp built-in script. This script dumps demonstrations that can be immediately used to train latent action models.

Start-Up from Scratch

In case the above conda environment loading does not work for you, here are the concrete package dependencies required to run LILA:

conda create --name lila python=3.8
conda activate lila
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit pygame quinine transformers typed-argument-parser wandb
Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face šŸ¤—
Sidd Karamcheti
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviƧos. Michael

James G Silva 17 Nov 10, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張臓強 14 Dec 02, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022