Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Overview

Edge Tracing using Gaussian Process Regression

Repository storing python module which implements a framework to trace individual edges in an image using Gaussian process regression.


Abstract from paper on methodology

We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.

More information

Paper which describes this methodology has been accepted to be published in IEEE Transactions on Image Processing in December 2021 or January 2022 (TBC).

For open access to this paper for information on the algorithm, pseudocode, applications and discussion, see here


Getting started

Required packages

  • numpy
  • matplotlib
  • scikit-learn
  • scikit-image
  • KDEpy
  • scipy
  • time

Code demonstration

After cloning this repository, import the python module and the provided utilities script:

# Import relevant python packages
import numpy as np
from gp_edge_tracing import gpet_utils, gpet

We can now construct the same noisy, test image used in the paper:

# Create test image with single sinusoidal edge and simple image gradient
N = 500
test_img, true_edge = gpet_utils.construct_test_img(size=(N,N), amplitude=200, curvature=4, noise_level=0.05, ltype='sinusoidal', intensity=0.3, gaps=True)

kernel = gpet_utils.kernel_builder(size=(11,5), unit=False)
grad_img = gpet_utils.comp_grad_img(test_img, kernel)

This test image and corresponding image gradient is shown below.

testimg_imggrad

With specification of default parameters we can run the edge tracing algorithm:

# Define model parameters
kernel_params = {'kernel': 'RBF', 'sigma_f': 75, 'length_scale': 20}
delta_x = 5
score_thresh = 1
N_samples = 1000
noise_y = 1
seed = 1
keep_ratio = 0.1
init = true_edge[[0, -1],:][:, [1,0]]
obs = np.array([])
fix_endpoints=True
return_std = True

# Instantiate algorithm using parameters in __init__()
noisy_trace = gpet.GP_Edge_Tracing(init, grad_img, kernel_params, noise_y, obs, N_samples, score_thresh,
                                   delta_x, keep_ratio, seed, return_std, fix_endpoints)

# __call__() parameters and run algorithm on test image
# Change these verbosity parameters to monitor fitting procedure
print_final_diagnostics = False
show_init_post = False
show_post_iter = False
verbose = False
edge_pred, edge_credint = noisy_trace(print_final_diagnostics, show_init_post, show_post_iter, verbose)

We can then superimpose the edge prediction and 95% credible interval onto the test image and image gradient, quantitatively comparing the prediction with the ground truth, as shown below.

testimg_result

More information

please refer to this notebook for the code to reproduce this result, as well as where to find more information on the compulsory, tuning and verbosity parameters.


Contributors

Owner
Jamie Burke
I'm a third year PhD student at the University of Edinburgh currently developing novel image processing tools for automated ocular image analysis.
Jamie Burke
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022