A Light CNN for Deep Face Representation with Noisy Labels

Overview

A Light CNN for Deep Face Representation with Noisy Labels

Citation

If you use our models, please cite the following paper:

@article{wulight,
  title={A Light CNN for Deep Face Representation with Noisy Labels},
  author={Wu, Xiang and He, Ran and Sun, Zhenan and Tan, Tieniu}
  journal={arXiv preprint arXiv:1511.02683},
  year={2015}
}
@article{wu2015lightened,
  title={A Lightened CNN for Deep Face Representation},
  author={Wu, Xiang and He, Ran and Sun, Zhenan},
  journal={arXiv preprint arXiv:1511.02683},
  year={2015}
}
@article{wu2015learning,
  title={Learning Robust Deep Face Representation},
  author={Wu, Xiang},
  journal={arXiv preprint arXiv:1507.04844},
  year={2015}
}

Updates

  • Dec 16, 2016
  • Nov 08, 2016
    • The prototxt and model C based on caffe-rc3 is updated. The accuracy on LFW achieves 98.80% and the [email protected]=0 obtains 94.97%.
    • The performance of set 1 on MegaFace achieves 65.532% for rank-1 accuracy and 75.854% for [email protected]=10^-6.
  • Nov 26, 2015
    • The prototxt and model B is updated and the accuracy on LFW achieves 98.13% for a single net without training on LFW.
  • Aug 13, 2015
    • Evaluation of LFW for identification protocols is published.
  • Jun 11, 2015
    • The prototxt and model A is released. The accuracy on LFW achieves 97.77%.

Overview

The Deep Face Representation Experiment is based on Convolution Neural Network to learn a robust feature for face verification task. The popular deep learning framework caffe is used for training on face datasets such as CASIA-WebFace, VGG-Face and MS-Celeb-1M. And the feature extraction is realized by python code caffe_ftr.py.

Structure

  • Code
    • data pre-processing and evaluation code
  • Model
    • caffemodel.
      • The model A and B is trained on CASIA-WebFace by caffe-rc.
      • The model C is trained on MS-Celeb-1M by caffe-rc3.
  • Proto
    • Lightened CNN implementations by caffe
  • Results
    • LFW features

Description

Data Pre-processing

  1. Download face dataset such as CASIA-WebFace, VGG-Face and MS-Celeb-1M.
  2. All face images are converted to gray-scale images and normalized to 144x144 according to landmarks.
  3. According to the 5 facial points, we not only rotate two eye points horizontally but also set the distance between the midpoint of eyes and the midpoint of mouth(ec_mc_y), and the y axis of midpoint of eyes(ec_y) .
Dataset size ec_mc_y ec_y
Training set 144x144 48 48
Testing set 128x128 48 40

Training

  1. The model is trained by open source deep learning framework caffe.
  2. The network configuration is showed in "proto" file and the trained model is showed in "model" file.

Evaluation

  1. The model is evaluated on LFW which is a popular data set for face verification task.
  2. The extracted features and lfw testing pairs are located in "results" file.
  3. To evaluate the model, the matlab code or other ROC evaluation code can be used.
  4. The model is also evaluated on MegaFace. The dataset and evaluation code can be downloaded from http://megaface.cs.washington.edu/

Results

The single convolution net testing is evaluated on unsupervised setting only computing cosine similarity for lfw pairs.

Model 100% - EER [email protected]=1% [email protected]=0.1% [email protected]=0 Rank-1 [email protected]=1%
A 97.77% 94.80% 84.37% 43.17% 84.79% 63.09%
B 98.13% 96.73% 87.13% 64.33% 89.21% 69.46%
C 98.80% 98.60% 96.77% 94.97% 93.80% 84.40%

The details are published as a technical report on arXiv.

The released models are only allowed for non-commercial use.

Owner
Alfred Xiang Wu
魔炮厨 | 夏娜厨 | 久远厨 | 珂朵莉厨 | PSN: wkira_vivio
Alfred Xiang Wu
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021