Keras code and weights files for popular deep learning models.

Overview

Trained image classification models for Keras

THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD.

Pull requests will not be reviewed nor merged. Direct any PRs to keras.applications. Issues are not monitored either.


This repository contains code for the following Keras models:

  • VGG16
  • VGG19
  • ResNet50
  • Inception v3
  • CRNN for music tagging

All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth".

Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet' argument in model constructor for all image models, weights='msd' for the music tagging model). Weights are automatically downloaded if necessary, and cached locally in ~/.keras/models/.

Examples

Classify images

from resnet50 import ResNet50
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
# print: [[u'n02504458', u'African_elephant']]

Extract features from images

from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input

model = VGG16(weights='imagenet', include_top=False)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

features = model.predict(x)

Extract features from an arbitrary intermediate layer

from vgg19 import VGG19
from keras.preprocessing import image
from imagenet_utils import preprocess_input
from keras.models import Model

base_model = VGG19(weights='imagenet')
model = Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

block4_pool_features = model.predict(x)

References

Additionally, don't forget to cite Keras if you use these models.

License

Comments
  • Transfer learning with Resnet50 fail with Exception

    Transfer learning with Resnet50 fail with Exception

    Hi, I am using Resnet50 to do transfer learning. The backend is tensorflow. I tried to stack three more layers on top of the Resnet but fail with following error:

    Exception: The shape of the input to "Flatten" is not fully defined (got (None, None, 2048). 
    Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.
    

    The code for stacking two models are as following:

        model = ResNet50(include_top=False, weights='imagenet')
    
        top_model = Sequential()
        top_model.add(Flatten(input_shape=model.output_shape[1:]))
        top_model.add(Dense(256, activation='relu'))
        top_model.add(Dropout(0.5))
        top_model.add(Dense(1, activation='sigmoid'))
        top_model.load_weights(top_model_weights_path)
    
        model = Model(input=model.input, output=top_model(model.output))
    
    opened by MrXu 5
  • [WIP] autocolorize model

    [WIP] autocolorize model

    opened by kashif 5
  • AttributeError: 'module' object has no attribute 'image_data_format'

    AttributeError: 'module' object has no attribute 'image_data_format'

    >>> from resnet50 import ResNet50
    Using TensorFlow backend.
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    >>> from keras.preprocessing import image
    >>> from imagenet_utils import preprocess_input, decode_predictions
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    

    My System

    • Tensorflow 1.0.0
    • Keras 1.2.2
    opened by MartinThoma 4
  • Inception not working as feature extractor

    Inception not working as feature extractor

    when calling predict:

    Traceback (most recent call last):
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/features_from_keras_tool_RGB_final.py", line 72, in <module>
        model = InceptionV3(weights='imagenet', include_top=False)
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/inception_v3.py", line 272, in InceptionV3
        model.load_weights(weights_path)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2446, in load_weights
        self.load_weights_from_hdf5_group(f)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2518, in load_weights_from_hdf5_group
        ' elements.')
    Exception: Layer #162 (named "batchnormalization_79" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_79 expects 4 weights, but the saved weights have 2 elements.
    
    Process finished with exit code 1
    
    opened by omarcr 4
  • Inception-v3 fine-tuning

    Inception-v3 fine-tuning

    opened by nournia 4
  • KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    I tried to run this code

    from vgg16 import VGG16
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = VGG16(weights='imagenet', include_top=False)
    
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    features = model.predict(x)
    

    but i got KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’) what should i do?

    opened by lightwolfz 3
  • vgg_face model,only compatible with Theano

    vgg_face model,only compatible with Theano

    I've already converted the caffe vgg_face model to keras,but it's only compatible with Theano. I've also tried many times to use the convert_kernel function in keras.utils.np_utils to make it compatible with Tensorflow,but I can't get the right result.

    opened by EncodeTS 3
  • ResNet50 Batch Normalization Mode

    ResNet50 Batch Normalization Mode

    Would it be reasonable to add an optional batch normalization mode argument to ResNet50? Allowing for mode = 2 would enable ResNet50 to be used in a shared fashion. I think the same BN initializations could be used in mode = 2. Happy to do a PR if folks think it's worthwhile.

    opened by jmhessel 3
  • Mean image for VGG-16 net

    Mean image for VGG-16 net

    Are the weight files here as same as the original VGG-16 net? There is a mean image file with VGG-16's Caffe Model. Should I still apply it for the best result?

    opened by duguyue100 2
  • inception model fails to load pretrained weights

    inception model fails to load pretrained weights

    I have used the resnet and vgg models successfully but cannot use the freshly released inception weights.

    Keras is on the latest master commit from github and i'm using anaconda python 3.5. -- Edit it was not on the 'latest' commit. It was on a commit from several days ago when I first cloned this repo; didn't realize it needed to be updated again.

    Thoughts?

    from inception_v3 import InceptionV3
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = InceptionV3(weights='imagenet', include_top=False)
    
    Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.2/inception_v3_weights_th_dim_ordering_th_kernels_notop.h5
    86679552/86916664 [============================>.] - ETA: 0s
    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-5-881bb296c35e> in <module>()
          3 from imagenet_utils import preprocess_input
          4 
    ----> 5 model = InceptionV3(weights='imagenet', include_top=False)
    
    /home/agonzales/git/image_classifier/src/inception_v3.py in InceptionV3(include_top, weights, input_tensor)
        279                                         cache_subdir='models',
        280                                         md5_hash='79aaa90ab4372b4593ba3df64e142f05')
    --> 281             model.load_weights(weights_path)
        282             if K.backend() == 'tensorflow':
        283                 warnings.warn('You are using the TensorFlow backend, yet you '
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights(self, filepath)
       2444         if 'layer_names' not in f.attrs and 'model_weights' in f:
       2445             f = f['model_weights']
    -> 2446         self.load_weights_from_hdf5_group(f)
       2447         if hasattr(f, 'close'):
       2448             f.close()
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights_from_hdf5_group(self, f)
       2516                                     ' weights, but the saved weights have ' +
       2517                                     str(len(weight_values)) +
    -> 2518                                     ' elements.')
       2519                 weight_value_tuples += zip(symbolic_weights, weight_values)
       2520             K.batch_set_value(weight_value_tuples)
    
    Exception: Layer #162 (named "batchnormalization_267" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_267 expects 4 weights, but the saved weights have 2 elements.
    
    opened by binaryaaron 2
  • SignatureDoesNotMatch when downloading the releases v0.7

    SignatureDoesNotMatch when downloading the releases v0.7

    Hello,

    We cannot fetch the file from the following URL.

    https://github.com/fchollet/deep-learning-models/releases/download/v0.7/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5

    The response is as followed

    <Code>SignatureDoesNotMatch</Code>
    <Message>The request signature we calculated does not match the signature you provided. Check your key and signing method.</Message>
    
    opened by lukkiddd 1
  • ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • NameError: name 'X_val_prep' is not defined

    NameError: name 'X_val_prep' is not defined

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    NameError: name 'X_val_prep' is not defined

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • Loading Keras Model for Multiprocess

    Loading Keras Model for Multiprocess

    Hi, I want to load a keras model in parent process and access by child process but i got many issue.what is correct way to do this.is it possible or not?

    opened by nitishcs007 0
  • keras applications

    keras applications

    Sorry to trouble you, I have a problem about training the keras model.Recently,I used the existing models from keras applications like VGG16,VGG19. The applications provide the existing models which are converted from caffe model. I reproduced the result for inference. But when I want to use the VGG16 model with weights retrain imagenet data,the acc was rised from 0,not a higher acc. First,I think the reason is that tfrecords convert the raw image to (-1.1) but caffe used the raw image which substract mean and convert RGB. Soon, I convert the data in tfrecords look like the data in caffe, but the acc is low too... Second I replace the categorical_crossentropy with sparse_categorical_crossentropy and cancell the one-hot coding. But it doen't work. I'm sorry for my English is elementary level.

    opened by chenglong19029001 0
  • No normalization in prepocess_input function

    No normalization in prepocess_input function

    In the file imagenet_utils.py, the prepocess_input function doesn't contain a normalization procedure, so if I am about to use pretrained VGG19, is it necessary to add this normalization procedure. What's more, why should RGB be changed to BGR. In other websites, the mean value of an image is [123.68, 116.779, 103.939] for RGB, but in this file, it is reversed. which mean value is suitable for the VGG19 in the data format RGB? Do I need to change the image format from RGB to BGR if I want to transfer VGG19 to other tasks? `def preprocess_input(x, dim_ordering='default'): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() assert dim_ordering in {'tf', 'th'}

    if dim_ordering == 'th':
        x[:, 0, :, :] -= 103.939
        x[:, 1, :, :] -= 116.779
        x[:, 2, :, :] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, ::-1, :, :]
    else:
        x[:, :, :, 0] -= 103.939
        x[:, :, :, 1] -= 116.779
        x[:, :, :, 2] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, :, :, ::-1]
    return x`
    
    opened by Schizophreni 1
Releases(v0.8)
Owner
François Chollet
François Chollet
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022