SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

Overview

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021)

Code (based on mmdetection) for SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images. [PDF].

Illustrations of FPN (a) and our SSPNet (b), where the blue boxes indicate that the object that can not be matched at the current layer will be regarded as a negative sample, and the opposite is a positive sample. The SSM will filter the features flowing from deep layers to the next layer, where those objects that can be both matched at adjacent layers will be reserved, and others (i.e., background, objects that can not be both matched at adjacent layers) will be weakened.

Visualization of CAM

Qualitative results

How to use?

Config file

config/sspnet/faster_rcnn_r50_sspnet_1x_coco.py (Anchor-based).
config/sspnet/fovea_r50_sspnet_4x4_1x_coco.py (Anchor-free).

Scale Selection Pyramid Network

mmdet/models/necks/ssfpn.py

Weight Sampler

mmdet/core/bbox/samplers/ic_neg_sampler.py

How to get dataset?

You can download the TinyPerson Dataset in here. Our custom dataset is coming soon.

Note:

Sorry for being late!

TOD

  • release customized label
  • release pretrain model
  • add quantitative results

Citation

If you use this code or ideas from the paper for your research, please cite our paper:

@article{hong2021sspnet,
  title={SSPNet: Scale Selection Pyramid Network for Tiny Person Detection From UAV Images},
  author={Hong, Mingbo and Li, Shuiwang and Yang, Yuchao and Zhu, Feiyu and Zhao, Qijun and Lu, Li},
  journal={IEEE Geoscience and Remote Sensing Letters},
  year={2021},
  publisher={IEEE}
}

Reference

[1] Chen, Kai, et al. "MMDetection: Open mmlab detection toolbox and benchmark." arXiv preprint arXiv:1906.07155 (2019).

[2] Yu, Xuehui, et al. "Scale match for tiny person detection." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.

Contact

[email protected]

Owner
Italian Cannon
Italian Cannon
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022