PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

Related tags

Deep Learningperffuzz
Overview

PerfFuzz

Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how can we find these inputs in the first place? PerfFuzz can generate such inputs automatically: given a program and at least one seed input, PerfFuzz automatically generates inputs that exercise pathological behavior across program locations, without any domain knowledge.

PerfFuzz uses multi-dimensional performance feedback and independently maximizes execution counts for all program locations. This enables PerfFuzz to find a variety of inputs that exercise distinct hot spots in a program.

Read the ISSTA paper for more details.

Built by Caroline Lemieux ([email protected]) and Rohan Padhye ([email protected]) on top of Michal Zalewski's ([email protected]) AFL.

Building PerfFuzz

To build on *nix machines, run

make

in the perffuzz directory. Since PerfFuzz is built on AFL, it will not build on Windows machines. You will also need to build PerfFuzz's instrumenting compiler, which can be done by running

cd llvm_mode
make
cd ..

in the perffuzz directory, after having built PerfFuzz.

  • Q: What version of clang should I use?

  • A: PerfFuzz was evaluated with clang-3.8.0 on Linux and works with verison 8 on Mac. To experiment with different clang/LLVM version, add the bin/ directory from the pre-build clang archives to the front of your PATH when compiling.

  • Q: I'm getting an error involving the -fno-rtti option.

  • A: If you're on Redhat Linux, this may be a gcc/clang compatibility issue. Apparently gcc-4.7 fixes the issue.

Test PerfFuzz on Insertion Sort

To check whether PerfFuzz is working correctly, try running it on the insertion sort benchmark provided. The following commands assume you are in the PerfFuzz directory.

Build

First, compile the benchmark:

./afl-clang-fast insertion-sort.c -o isort

Run PerfFuzz

Let's make some seeds for PerfFuzz to start with:

mkdir isort-seeds
head -c 64 /dev/zero > isort-seeds/zeroes

Now we can run PerfFuzz:

./afl-fuzz -p -i isort-seeds -o isort_perf_test/ -N 64 ./isort @@

You should see the number of total paths (this is a misnomer; it's just the number of saved inputs) increase consistently. You can also check to see if the saved inputs are heading towards a worst-case by running

for i in isort_perf_test/queue/id*; do ./isort $i | grep comps; done

(which, for each saved input, plots the number of comparisons insertion sort performed while sorting that input)

For comparison with the performance compared to regular afl, you can run: ./afl-fuzz -i isort-seeds -o isort_afl_test/ -N 64 ./isort @@ without the -p option, this should just run regular AFL. You should see total_paths quickly topping out around ~20 or so, and the number of cycles increase a lot. There will probably be much fewer comparisons performed for the saved inputs as well. The highest number of comparisons printed when you run:

for i in isort_afl_test/queue/id*; do ./isort $i | grep comps; done

should be smaller than what you saw for the inputs in isort_perf_test/queue.

Running PerfFuzz on a program of your choice

Compile your program with PerfFuzz

To compile your C/C++ program with perffuzz, replace CC (resp. CXX) with path/to/perffuzz/afl-clang-fast (resp. path/to/perffuzz/afl-clang-fast++) in your build process. See section (3) of README (not README.md) for more details, replacing references of path/to/afl/afl-gcc with path/to/perffuzz/afl-clang-fast.

  • Q: afl-clang-fast doesn't exist!
  • A: make sure you ran make in the llvm_mode directory (see "Building PerfFuzz")

Run PerfFuzz on your program.

In short, follow the instructions in README (regular AFL readme) section 6, but add the -p option to enable PerfFuzz, and the -N num option to restrict the size of produced inputs to a maximum file size of num. Make sure your initial seed inputs (in the input directory) are of smaller size than num bytes!

On many programs (including the benchmarks in the paper), the -d option (Fidgety mode) offers better performance.

Let PerfFuzz run for as long as you like: we ran for a few hours on larger benchmarks.

Interpret PerfFuzz results.

In the queue directory of the ouput directory, inputs postfixed with +max were saved because the maximized a performance key.

We provide some tools to help analyze the results. Notably, afl-showmax can print:

  1. The total path length (default)
  2. The maximum hotspot (-x option)
  3. The entire performance map in a key:value format (-a option)

To build afl-showmax, run

make afl-showmax

in the PerfFuzz directory.

You might also like...
This repository contains the code for the paper
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.

An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Comments
  • test of llvm_mode fails

    test of llvm_mode fails

    Hi,

    On a recent Arch Linux, when building llvm_mode, I'm getting:

    [email protected]:llvm_mode$ make
    [*] Checking for working 'llvm-config'...
    [*] Checking for working 'clang'...
    [*] Checking for '../afl-showmap'...
    [+] All set and ready to build.
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  afl-clang-fast.c -o ../afl-clang-fast 
    ln -sf afl-clang-fast ../afl-clang-fast++
    clang++ `llvm-config --cxxflags` -fno-rtti -fpic -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DVERSION=\"2.52b\" -Wno-variadic-macros -shared afl-llvm-pass.so.cc -o ../afl-llvm-pass.so `llvm-config --ldflags` 
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -shared afl-catch-dlclose.so.c -o ../afl-catch-dlclose.so
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -c afl-llvm-rt.o.c -o ../afl-llvm-rt.o
    afl-llvm-rt.o.c:99:20: warning: incompatible pointer types assigning to 'u32 *' (aka 'unsigned int *') from 'u8 *' (aka 'unsigned char *') [-Wincompatible-pointer-types]
        __afl_perf_ptr = &__afl_area_ptr[MAP_SIZE];
                       ^ ~~~~~~~~~~~~~~~~~~~~~~~~~
    1 warning generated.
    [*] Building 32-bit variant of the runtime (-m32)... success!
    [*] Building 64-bit variant of the runtime (-m64)... success!
    [*] Testing the CC wrapper and instrumentation output...
    unset AFL_USE_ASAN AFL_USE_MSAN AFL_INST_RATIO; AFL_QUIET=1 AFL_PATH=. AFL_CC=clang ../afl-clang-fast -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  ../test-instr.c -o test-instr 
    echo 0 | ../afl-showmap -m none -q -o .test-instr0 ./test-instr
    echo 1 | ../afl-showmap -m none -q -o .test-instr1 ./test-instr
    
    Oops, the instrumentation does not seem to be behaving correctly!
    
    Please ping <[email protected]> to troubleshoot the issue.
    
    make: *** [Makefile:105: test_build] Error 1**
    

    It was a full normal compile, so I'm a bit confused. Is the test incorrectly set up for perffuzz and hasn't been changed/fixed?

    opened by msoos 7
  • Prioritize maximizing values with more granularity

    Prioritize maximizing values with more granularity

    Some values in the key: value map may be more worth increasing than others (either more interesteing, or others may just not increase). Two ideas:

    1. Favour based on the key achieving maximum value (similar to afl-rb's minimizing branch hits)
    2. Favour based on whether value is actually increasing.
    opened by carolemieux 3
  • What is Perf_Mask in the instrumentation pass?

    What is Perf_Mask in the instrumentation pass?

    Hey, I am trying to do some thing new on PerfFuzz. But there is one thing in the code I am confused.

    What is the purpose of this Perf_Mask? https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L129

    I don't think it is correct to add Perf_Mask to Edge_Id to create a GEP instruction in PerfBranchPtr https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L176 https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L177

    However, EdgeId % PERF_SIZE is acctually needed to index the perf map.

    Looking forward to your reply, thanks.

    opened by zhanggenex 1
  • Rename staleness

    Rename staleness

    Find a new name for staleness which is either (1) more intuitive or (2) involves the use of the word "gradient".

    Suggestions What we currently use as staleness is really the inverse of what all these things could be...

    • magnitude-agnostic gradient
    • increase gradient
    • binary gradient
    opened by carolemieux 0
Releases(1.0)
Owner
Caroline Lemieux
Caroline Lemieux
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022