Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

Related tags

Deep LearningSALOD
Overview

SALOD

Source code of our work: "Benchmarking Deep Models for Salient Object Detection".
In this works, we propose a new benchmark for SALient Object Detection (SALOD) methods.

We re-implement 14 methods using same settings, including input size, data loader and evaluation metrics (thanks to Metrics). Hyperparameters of optimizer are different because of various network structures and objective functions. We try our best to tune the optimizer for these models to achieve the best performance one-by-one. Some other networks are debugging now, it is welcome for your contributions on these networks to obtain better performance.

Properties

  1. A unify interface for new models. To develop a new network, you only need to 1) set configs; 2) define network; 3) define loss function. See methods/template.
  2. We build a new dataset by collecting several prevalent datasets in SOD task.
  3. Easy to adopt different backbones (Available backbones: ResNet-50, VGG-16, MobileNet-v2, EfficientNet-B0, GhostNet, Res2Net)
  4. Testing all networks on your own device. By input the name of network, you can test all available methods in our benchmark. Comparisons includes FPS, GFLOPs, model size and multiple effectiveness metrics.
  5. We implement a loss factory that you can change the loss functions using command line parameters.

Available Methods:

Methods Publish. Input Weight Optim. LR Epoch Paper Src Code
DHSNet CVPR2016 320^2 95M Adam 2e-5 30 openaccess Pytorch
NLDF CVPR2017 320^2 161M Adam 1e-5 30 openaccess Pytorch/TF
Amulet ICCV2017 320^2 312M Adam 1e-5 30 openaccess Pytorch
SRM ICCV2017 320^2 240M Adam 5e-5 30 openaccess Pytorch
PicaNet CVPR2018 320^2 464M SGD 1e-2 30 openaccess Pytorch
DSS TPAMI2019 320^2 525M Adam 2e-5 30 IEEE/ArXiv Pytorch
BASNet CVPR2019 320^2 374M Adam 1e-5 30 openaccess Pytorch
CPD CVPR2019 320^2 188M Adam 1e-5 30 openaccess Pytorch
PoolNet CVPR2019 320^2 267M Adam 5e-5 30 openaccess Pytorch
EGNet ICCV2019 320^2 437M Adam 5e-5 30 openaccess Pytorch
SCRN ICCV2019 320^2 100M SGD 1e-2 30 openaccess Pytorch
GCPA AAAI2020 320^2 263M SGD 1e-2 30 aaai.org Pytorch
ITSD CVPR2020 320^2 101M SGD 5e-3 30 openaccess Pytorch
MINet CVPR2020 320^2 635M SGD 1e-3 30 openaccess Pytorch
Tuning ----- ----- ------ ------ ----- ----- ----- -----
*PAGE CVPR2019 320^2 ------ ------ ----- ----- openaccess TF
*PFA CVPR2019 320^2 ------ ------ ----- ----- openaccess Pytorch
*F3Net AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*PFPN AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*LDF CVPR2020 320^2 ------ ------ ----- ----- openaccess Pytorch

Usage

# model_name: lower-cased method name. E.g. poolnet, egnet, gcpa, dhsnet or minet.
python3 train.py model_name --gpus=0

python3 test.py model_name --gpus=0 --weight=path_to_weight 

python3 test_fps.py model_name --gpus=0

# To evaluate generated maps:
python3 eval.py --pre_path=path_to_maps

Results

We report benchmark results here.
More results please refer to Reproduction, Few-shot and Generalization.

Notice: please contact us if you get better results.

VGG16-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 15.4 52.5 7.5 69.8 .884 .815 .812 .049 .880 .893
Amulet 33.2 1362 12.5 35.1 .855 .790 .772 .061 .854 .876
NLDF 24.6 136 9.7 46.3 .886 .824 .828 .045 .881 .898
SRM 37.9 73.1 7.9 63.1 .857 .779 .769 .060 .859 .874
PicaNet 26.3 74.2 40.5* 8.8 .889 .819 .823 .046 .884 .899
DSS 62.2 99.4 11.3 30.3 .891 .827 .826 .046 .888 .899
BASNet 80.5 114.3 16.9 32.6 .906 .853 .869 .036 .899 .915
CPD 29.2 85.9 10.5 36.3 .886 .815 .792 .052 .885 .888
PoolNet 52.5 236.2 26.4 23.1 .902 .850 .852 .039 .898 .913
EGNet 101 178.8 19.2 16.3 .909 .853 .859 .037 .904 .914
SCRN 16.3 47.2 9.3 24.8 .896 .820 .822 .046 .891 .894
GCPA 42.8 197.1 17.5 29.3 .903 .836 .845 .041 .898 .907
ITSD 16.9 76.3 15.2* 30.6 .905 .820 .834 .045 .901 .896
MINet 47.8 162 21.8 23.4 .900 .839 .852 .039 .895 .909

ResNet50-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 24.2 13.8 3.9 49.2 .909 .830 .848 .039 .905 .905
Amulet 79.8 1093.8 6.3 35.1 .895 .822 .835 .042 .894 .900
NLDF 41.1 115.1 9.2 30.5 .903 .837 .855 .038 .898 .910
SRM 61.2 20.2 5.5 34.3 .882 .803 .812 .047 .885 .891
PicaNet 106.1 36.9 18.5* 14.8 .904 .823 .843 .041 .902 .902
DSS 134.3 35.3 6.6 27.3 .894 .821 .826 .045 .893 .898
BASNet 95.5 47.2 12.2 32.8 .917 .861 .884 .032 .909 .921
CPD 47.9 14.7 7.7 22.7 .906 .842 .836 .040 .904 .908
PoolNet 68.3 66.9 10.2 33.9 .912 .843 .861 .036 .907 .912
EGNet 111.7 222.8 25.7 10.2 .917 .851 .867 .036 .912 .914
SCRN 25.2 12.5 5.5 19.3 .910 .838 .845 .040 .906 .905
GCPA 67.1 54.3 6.8 37.8 .916 .841 .866 .035 .912 .912
ITSD 25.7 19.6 5.7 29.4 .913 .825 .842 .042 .907 .899
MINet 162.4 87 11.7 23.5 .913 .851 .871 .034 .906 .917

Create New Model

To create a new model, you can copy the template folder and modify it as you want.

cp -r ./methods/template ./methods/new_name

More details please refer to python files in template floder.

Loss Factory

We supply a Loss Factory for an easier way to tune the loss functions. You can set --loss and --lw parameters to use it.

Here are some examples:

loss_dict = {'b': BCE, 's': SSIM, 'i': IOU, 'd': DICE, 'e': Edge, 'c': CTLoss}

python train.py ... --loss=bd
# loss = 1 * bce_loss + 1 * dice_loss

python train.py ... --loss=bs --lw=0.3,0.7
# loss = 0.3 * bce_loss + 0.7 * ssim_loss

python train.py ... --loss=bsid --lw=0.3,0.1,0.5,0.2
# loss = 0.3 * bce_loss + 0.1 * ssim_loss + 0.5 * iou_loss + 0.2 * dice_loss
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022