Neural models of common sense. 🤖

Related tags

Deep Learningrainbow
Overview

Unicorn on Rainbow

Neural models of common sense.

This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. Unicorn on Rainbow introduces a new evaluation, the cost equivalent curve, which compares models in terms of their cost-benefit trade offs. Using cost equivalent curves, we conduct a large-scale empirical study of intermediate-task transfer for common sense on a new benchmark collection of commonsense reasoning datasets, Rainbow. With findings from this study, we create a new state-of-the-art model for commonsense reasoning: Unicorn.

Jump to a section of the readme to accomplish different goals:

  • Rainbow: Read about and download data for Rainbow, our new commonsense reasoning benchmark.
  • Unicorn: Get up and running with Unicorn, our state-of-the-art commonsense reasoning model.
  • Cost Equivalent Curves: Learn how to generate cost equivalent curves for your own predictions.
  • Experimental Results: Download and analyze the results from our hundreds of experiments.
  • Setup: Get set up to run the code in this repository.
  • Quickstart: Run the code in this repo.
  • Citation: Cite the Unicorn on Rainbow paper.
  • Contact: Reach out with questions or comments.

Note: This repository is intended for research. There is no intention for ongoing maintenance.

Rainbow

Rainbow brings together six pre-existing commonsense reasoning benchmarks: aNLI, Cosmos QA, HellaSWAG, Physical IQa, Social IQa, and WinoGrande. These commonsense reasoning benchmarks span both social and physical common sense.

Note: Rainbow pins these datasets to specific versions. To make sure you're using the correct data, please download those versions below.

Getting the Data

Rainbow preprocesses all of the datasets into a text-to-text format for ease of modeling.

Alternatively, you can download the individual tasks and preprocess them yourself.

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

Submitting to the Leaderboard

If you develop a model for Rainbow, please feel free to submit to the leaderboard!

Unicorn

Unicorn (a UNIversal COmmonsense Reasoning Model) solves commonsense reasoning tasks in the text-to-text format. In principle, Unicorn may be trained on any NLP task, simply feed it text input and ask it to predict text output. Unicorn derives from T5, supercharging it for commonsense reasoning tasks and achieving state-of-the-art across a number of popular benchmarks, including Rainbow and CommonsenseQA.

To try Unicorn on your own data, first download the weights then fine-tune and evaluate it on your own data.

Downloading the Weights

To run Unicorn, you'll first need to download its weight files into a directory or path on Google Cloud. Using gsutil:

gsutil cp -r \
  gs://ai2-mosaic-public/projects/rainbow/v1.0/unicorns/lr-2e-3_batch-size-32
  $DST

Where $DST is the destination directory.

Reproducing our Results

In Unicorn on Rainbow, we trained different Unicorns that were first multitasked on Rainbow using different hyper-parameters. The checkpoint we've made available had the best performance most often. If you need the other checkpoints, please email the authors.

Cost Equivalent Curves

Cost equivalent curves compare the cost-benefit trade offs different techniques offer. In particular, cost equivalent curves plot the baseline and new technique's equivalent costs, or the costs where they achieve the same performance. For example, if the cost is measured as the number of examples and performance is measured by accuracy, then the cost equivalent curve shows how many examples the baseline needs to match the new technique's accuracy.

The plot_cost_equivalent_curves function in bin/create-multi-experiment-figures.py offers example code for how to create cost equivalent curves in Python.

Stay Tuned! We'll soon be releasing an easy-to-use, standalone package for creating cost equivalent curves. Check back here for it in the future.

Experimental Results

For Unicorn on Rainbow, we ran hundreds of experiments. We've made available the results from all those experiments in order to facilitate future research. For example, you may want those thousands of training curves to study hyper-parameter tuning or how loss evolves over training.

Among other things, you'll find:

  • predictions on dev from every checkpoint saved during training
  • training curves (training step vs. loss)
  • learning curves (dataset size vs. accuracy)
  • hyper-parameter tuning
  • all tables and figures from the paper
  • and more...

Our hope is that researchers can reuse this large collection of experiments to derive new practical and research insights.

Downloading the Results

Five collections of results are available:

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

NOTE: The learning curves experiments varied the number of training examples up to 16,000; however, CommonsenseQA has fewer than 16,000 training examples. Thus, for CommonsenseQA numbers higher than 9,741 are truncated to that size. This subtlety is taken care of by the data processing pipeline when the experiments are processed into the results tables, so it only affects rainbow-predictions.tar.gz and rainbow-experiments.tar.gz.

Replicating Our Analysis Pipeline

All the scripts to replicate our analysis pipeline reside in bin/. In order to run the scripts, you'll need to get set up for development.

The overall pipeline is as follows:

+----------------------------+
| rainbow-predictions.tar.gz |
+----------------------------+
              |
              | (bin/organize-experiments)
              V
+----------------------------+
| rainbow-experiments.tar.gz |
+----------------------------+
              |
              | (bin/generate-tables.py)
              V
  +------------------------+
  | rainbow-results.tar.gz |
  +------------------------+
         |         |
         |         | (bin/generate-latex-tables.py)
         |         V
         |     +-----------------------------+
         |     | rainbow-latex-tables.tar.gz |
         |     +-----------------------------+
         |
         | (bin/create-single-experiment-figures.py)
         | (bin/create-multi-experiment-figures.py)
         V
+------------------------+
| rainbow-figures.tar.gz |
+------------------------+

To run the pipeline, start by downloading rainbow-predictions.tar.gz (see Downloading the Results above).

Use bin/organize-experiments to produce rainbow-experiments.tar.gz:

$ tar -xf rainbow-predictions.tar.gz
$ bin/organize-experiments rainbow-predictions $DST

Where $DST is the desired destination directory (for example the current directory, .).

Use bin/generate-tables.py to produce rainbow-results.tar.gz:

$ bin/generate-tables.py rainbow-experiments rainbow-results

Use bin/create-single-experiment-figures.py and bin/create-multi-experiment-figures.py to create rainbow-figures.tar.gz:

$ bin/create-single-experiment-figures.py rainbow-results rainbow-figures/single-experiment
$ bin/create-multi-experiment-figures.py rainbow-results rainbow-figures/multi-experiment

And use bin/generate-latex-tables.py to produce rainbow-latex-tables.tar.gz:

$ bin/generate-latex-tables.py rainbow-results rainbow-latex-tables

All scripts except bin/organize-experiments are also self-documenting, so pass --help to any of them for more information.

Setup

This project requires Python 3.6 or above.

First, install the project's dependencies:

./bin/install

Next, make sure you have the following environment variables set:

  1. RAINBOW_DATASETS_DIR: The directory for storing all relevant datasets.
  2. RAINBOW_PREPROCESSED_DATASETS_DIR: The directory for storing the preprocessed dataset split files.
  3. RAINBOW_TFDS_DATASETS_DIR: The directory for storing the TFDS (tensorflow datasets) datasets.

Training requires TPUs. For training, all directories should point to Google Cloud Storage prefixes. Additionally, you'll need the following environment variables:

  1. PROJECT: Your Google Cloud project's ID.
  2. ZONE: Your Google Cloud virtual machine's zone.
  3. TPU_NAME: Your TPU's name.
  4. TPU_TOPOLOGY: Your TPU's topology.

Then, download and prepare all the datasets for text-to-text modeling:

$ ./bin/prepare.py --help
Usage: prepare.py [OPTIONS]

  Prepare all relevant datasets for text-to-text modeling.

  Download to and read the datasets from --src, transform them into CSVs
  suitable for text-to-text models, then write the results to --dst. Google
  storage paths are supported.

Options:
  --src TEXT        The directory to which to download all the relevant
                    datasets. Defaults to the RAINBOW_DATASETS_DIR environment
                    variable.  [required]
  --dst TEXT        The directory to which to write the preprocessed dataset
                    files. Defaults to the RAINBOW_PREPROCESSED_DATASETS_DIR
                    environment variable.  [required]
  --force-download  Force downloads of all the datasets, otherwise only
                    missing datasets will be downloaded.
  --help            Show this message and exit.

Finally, verify your installation:

./bin/verify

Quickstart

Before following this section, make sure you've done the Setup.

Fine-tuning

To fine-tune the model, use bin/fine-tune.py:

$ ./bin/fine-tune.py --help
Usage: fine-tune.py [OPTIONS] MIXTURE RESULTS_DIR

  Fine-tune the model on MIXTURE, writing results to RESULTS_DIR.

Options:
  --pretrained-model TEXT         The path to or name of the pretrained model.
                                  Defaults to 3B.
  --n-steps INTEGER               The number of gradient updates. Defaults to
                                  25,000.
  --learning-rate FLOAT           The learning rate to use for training.
                                  Defaults to 3e-3.
  --batch-size INTEGER            The batch size to use for training. For
                                  efficient training on the TPU, choose a
                                  multiple of either 8 or 128. Defaults to 16.
  --model-parallelism INTEGER     The degree of model parallelism to use.
                                  Defaults to 8.
  --save-checkpoints-steps INTEGER
                                  The number of steps to take before saving a
                                  checkpoint. Defaults to 5000.
  --n-checkpoints-to-keep INTEGER
                                  The number of checkpoints to keep during
                                  fine-tuning. Defaults to 4.
  --tpu-name TEXT                 The name of the TPU. Defaults to the
                                  TPU_NAME environment variable.  [required]
  --tpu-topology TEXT             The topology of the TPU. Defaults to the
                                  TPU_TOPOLOGY environment variable.
                                  [required]
  --help                          Show this message and exit.

Evaluation

To evaluate the model, use bin/evaluate.py:

$ ./bin/evaluate.py --help
Usage: evaluate.py [OPTIONS] MIXTURE RESULTS_DIR

  Evaluate the model located at RESULTS_DIR on MIXTURE.

Options:
  --batch-size INTEGER         The batch size to use for prediction. For
                               efficient prediction on the TPU, choose a
                               multiple of either 8 or 128. Defaults to 64.
  --model-parallelism INTEGER  The degree of model parallelism to use.
                               Defaults to 8.
  --tpu-name TEXT              The name of the TPU. Defaults to the TPU_NAME
                               environment variable.  [required]
  --tpu-topology TEXT          The topology of the TPU. Defaults to the
                               TPU_TOPOLOGY environment variable.  [required]
  --help                       Show this message and exit.

Tests and Code Quality

The code is formatted with black. You can run the formatter using the bin/format script:

$ ./bin/format

To run code quality checks, use the bin/verify script:

$ ./bin/verify

For fine-grained control of which tests to run, use pytest directly:

$ pytest

You can also skip slower tests by passing the --skip-slow (-s) flag:

$ pytest --skip-slow

Citation

Unicorn on Rainbow is a AAAI 2021 paper. Please check back here soon for the bibtex citation.

Contact

For public, non-sensitive questions and concerns, please file an issue on this repository.

For private or sensitive inquiries email mosaic on the allenai.org website.

ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022