Detectorch - detectron for PyTorch

Overview

Detectorch - detectron for PyTorch

(Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inference and evaluation are supported -- no training) (News: Now supporting FPN and ResNet-101!)

This code allows to use some of the Detectron models for object detection from Facebook AI Research with PyTorch.

It currently supports:

  • Fast R-CNN
  • Faster R-CNN
  • Mask R-CNN

It supports ResNet-50/101 models with or without FPN. The pre-trained models from caffe2 can be imported and used on PyTorch.

Example Mask R-CNN with ResNet-101 and FPN.

Evaluation

Both bounding box evaluation and instance segmentation evaluation where tested, yielding the same results as in the Detectron caffe2 models. These results below have been computed using the PyTorch code:

Model box AP mask AP model id
fast_rcnn_R-50-C4_2x 35.6 36224046
fast_rcnn_R-50-FPN_2x 36.8 36225249
e2e_faster_rcnn_R-50-C4_2x 36.5 35857281
e2e_faster_rcnn_R-50-FPN_2x 37.9 35857389
e2e_mask_rcnn_R-50-C4_2x 37.8 32.8 35858828
e2e_mask_rcnn_R-50-FPN_2x 38.6 34.5 35859007
e2e_mask_rcnn_R-101-FPN_2x 40.9 36.4 35861858

Training

Training code is experimental. See train_fast.py for training Fast R-CNN. It seems to work, but slow.

Installation

First, clone the repo with git clone --recursive https://github.com/ignacio-rocco/detectorch so that you also clone the Coco API.

The code can be used with PyTorch 0.3.1 or PyTorch 0.4 (master) under Python 3. Anaconda is recommended. Other required packages

  • torchvision (conda install torchvision -c soumith)
  • opencv (conda install -c conda-forge opencv )
  • cython (conda install cython)
  • matplotlib (conda install matplotlib)
  • scikit-image (conda install scikit-image)
  • ninja (conda install ninja) (required for Pytorch 0.4 only)

Additionally, you need to build the Coco API and RoIAlign layer. See below.

Compiling the Coco API

If you cloned this repo with git clone --recursive you should have also cloned the cocoapi in lib/cocoapi. Compile this with:

cd lib/cocoapi/PythonAPI
make install

Compiling RoIAlign

The RoIAlign layer was converted from the caffe2 version. There are two different implementations for each PyTorch version:

  • Pytorch 0.4: RoIAlign using ATen library (lib/cppcuda). Compiled JIT when loaded.
  • PyTorch 0.3.1: RoIAlign using TH/THC and cffi (lib/cppcuda_cffi). Needs to be compiled with:
cd lib/cppcuda_cffi
./make.sh 

Quick Start

Check the demo notebook.

Owner
Ignacio Rocco
Ignacio Rocco
šŸ‡°šŸ‡· Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Official pytorch implement for ā€œTransformer-Based Source-Free Domain Adaptationā€

Official implementation for TransDA Official pytorch implement for ā€œTransformer-Based Source-Free Domain Adaptationā€. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video šŸ”„ | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

šŸ‘ļø Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022