6D Grasping Policy for Point Clouds

Overview

GA-DDPG

[website, paper]

image

Installation

git clone https://github.com/liruiw/GA-DDPG.git --recursive
  1. Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, python 2.7 / 3.6

    • (Required for Training) - Install OMG submodule and reuse conda environment.
    • (Docker) See OMG Docker for details.
    • (Demo) - Install GA-DDPG inside a new conda environment
      conda create --name gaddpg python=3.6.9
      conda activate gaddpg
      pip install -r requirements.txt
      
  2. Install PointNet++

  3. Download environment data bash experiments/scripts/download_data.sh

Pretrained Model Demo

  1. Download pretrained models bash experiments/scripts/download_model.sh
  2. Demo model test bash experiments/scripts/test_demo.sh
Example 1 Example 2

Save Data and Offline Training

  1. Download example offline data bash experiments/scripts/download_offline_data.sh The .npz dataset (saved replay buffer) can be found in data/offline_data and can be loaded for training.
  2. To save extra gpus for online rollouts, use the offline training script bash ./experiments/scripts/train_offline.sh bc_aux_dagger.yaml BC
  3. Saving dataset bash ./experiments/scripts/train_online_save_buffer.sh bc_save_data.yaml BC.

Online Training and Testing

  1. We use ray for parallel rollout and training. The training scripts might require adjustment according to the local machine. See config.py for some notes.
  2. Training online bash ./experiments/scripts/train_online_visdom.sh td3_critic_aux_policy_aux.yaml DDPG. Use visdom and tensorboard to monitor.
  3. Testing on YCB objects bash ./experiments/scripts/test_ycb.sh demo_model. Replace demo_model with trained models. Logs and videos would be saved to output_misc

Note

  1. Checkout core/test_realworld_ros_final.py for an example of real-world usages.
  2. Related Works (OMG, ACRONYM, 6DGraspNet, 6DGraspNet-Pytorch, ContactGraspNet, Unseen-Clustering)
  3. To use the full Acronym dataset with Shapenet meshes, please follow ACRONYM to download the meshes and grasps and follow OMG-Planner to process and save in /data. filter_shapenet.json can then be used for training.
  4. Please use Github issue tracker to report bugs. For other questions please contact Lirui Wang.

File Structure

├── ...
├── GADDPG
|   |── data 		# training data
|   |   |── grasps 		# grasps from the ACRONYM dataset
|   |   |── objects 		# object meshes, sdf, urdf, etc
|   |   |── robots 		# robot meshes, urdf, etc
|   |   └── gaddpg_scenes	 	# test scenes
|   |── env 		# environment-related code
|   |   |── panda_scene 		# environment and task
|   |   └── panda_gripper_hand_camera 		# franka panda with gripper and camera
|   |── OMG 		# expert planner submodule
|   |── experiments 		# experiment scripts
|   |   |── config 		# hyperparameters for training, testing and environment
|   |   |── scripts 		# main running scripts
|   |   |── model_spec 		# network architecture spec
|   |   |── cfgs 		# experiment config and hyperparameters
|   |   └── object_index 		# object indexes
|   |── core 		# agents and learning
|   |   |──  train_online 		# online training
|   |   |──  train_test_offline 	# testing and offline training
|   |   |──  network 		# network architecture
|   |   |──  test_realworld_ros_final 		# real-world script example
|   |   |──  agent 		# main agent code
|   |   |──  replay_memory 		# replay buffer
|   |   |──  trainer 	# ray-related training setup
|   |   └── ...
|   |── output 		# trained model
|   |── output_misc 	# log and videos
|   └── ...
└── ...

Citation

If you find GA-DDPG useful in your research, please consider citing:

@inproceedings{wang2020goal,
	author    = {Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox},
	title     = {Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds},
	booktitle = {arXiv:2010.00824},
	year      = {2020}
}

License

The GA-DDPG is licensed under the MIT License.

Owner
Lirui Wang
MIT CSAIL Ph.D. Student. Previous UWCSE and NVIDIA.
Lirui Wang
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023