[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Overview

PWC PWC

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021)

[arXiv][Project page >> coming soon]

Sanath Narayan*, Akshita Gupta*, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Mubarak Shah

( 🌟 denotes equal contribution)

Installation

The codebase is built on PyTorch 1.1.0 and tested on Ubuntu 16.04 environment (Python3.6, CUDA9.0, cuDNN7.5).

For installing, follow these intructions

conda create -n mlzsl python=3.6
conda activate mlzsl
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image scikit-learn opencv-python yacs joblib natsort h5py tqdm pandas

Install warmup scheduler

cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

Attention Visualization

Results

Our approach on NUS-WIDE Dataset.

Our approach on OpenImages Dataset.

Training and Evaluation

NUS-WIDE

Step 1: Data preparation

  1. Download pre-computed features from here and store them at features folder inside BiAM/datasets/NUS-WIDE directory.
  2. [Optional] You can extract the features on your own by using the original NUS-WIDE dataset from here and run the below script:
python feature_extraction/extract_nus_wide.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full NUS-WIDE dataset, please run:

sh scripts/train_nus.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on NUS-WIDE. You can download the pretrained weights from here and store them at NUS-WIDE folder inside pretrained_weights directory.

sh scripts/evaluate_nus.sh

OPEN-IMAGES

Step 1: Data preparation

  1. Please download the annotations for training, validation, and testing into this folder.

  2. Store the annotations inside BiAM/datasets/OpenImages.

  3. To extract the features for OpenImages-v4 dataset run the below scripts for crawling the images and extracting features of them:

## Crawl the images from web
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `train`: download images into `./image_data/train/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `validation`: download images into `./image_data/validation/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `test`: download images into `./image_data/test/`

## Run feature extraction codes for all the 3 splits
python feature_extraction/extract_openimages_train.py
python feature_extraction/extract_openimages_test.py
python feature_extraction/extract_openimages_val.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full OpenImages-v4 dataset, please run:

sh scripts/train_openimages.sh
sh scripts/evaluate_openimages.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on OpenImages. You can download the pretrained weights from here and store them at OPENIMAGES folder inside pretrained_weights directory.

sh scripts/evaluate_openimages.sh

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you find this repository useful, please consider giving a star and citation 🎊 :

@article{narayan2021discriminative,
title={Discriminative Region-based Multi-Label Zero-Shot Learning},
author={Narayan, Sanath and Gupta, Akshita and Khan, Salman and  Khan, Fahad Shahbaz and Shao, Ling and Shah, Mubarak},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher = {IEEE},
year={2021}
}

Contact

Should you have any question, please contact 📧 [email protected]

Owner
Akshita Gupta
Sem @IITR | Outreachy @mozilla | Research Engineer @IIAI
Akshita Gupta
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022