Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

Overview

scc4onnx

Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Allow the user to specify the name of the input OP to change the input order.
  • All number of dimensions can be freely changed, not only 4 dimensions such as NCHW and NHWC.
  • Simply rewrite the input order of the input OP to the specified order and extrapolate Transpose after the input OP so that it does not affect the processing of subsequent OPs.
  • Allows the user to change the channel order of RGB and BGR by specifying options.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scc4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/scc4onnx:latest

### docker build
$ docker build -t pinto0309/scc4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/scc4onnx:latest
$ cd /workdir

2. CLI Usage

$ scc4onnx -h

usage:
  scc4onnx [-h]
  --input_onnx_file_path INPUT_ONNX_FILE_PATH
  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
  [--input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM]
  [--channel_change_inputs INPUT_OP_NAME DIM]
  [--non_verbose]

optional arguments:
  -h, --help
      show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  --input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM
      Specify the name of the input_op to be dimensionally changed and the order of the
      dimensions after the change.
      The name of the input_op to be dimensionally changed can be specified multiple times.

      e.g.
      --input_op_names_and_order_dims aaa [0,3,1,2] \
      --input_op_names_and_order_dims bbb [0,2,3,1] \
      --input_op_names_and_order_dims ccc [0,3,1,2,4,5]

  --channel_change_inputs INPUT_OP_NAME DIM
      Change the channel order of RGB and BGR.
      If the original model is RGB, it is transposed to BGR.
      If the original model is BGR, it is transposed to RGB.
      It can be selectively specified from among the OP names specified
      in --input_op_names_and_order_dims.
      OP names not specified in --input_op_names_and_order_dims are ignored.
      Multiple times can be specified as many times as the number of OP names specified
      in --input_op_names_and_order_dims.
      --channel_change_inputs op_name dimension_number_representing_the_channel
      dimension_number_representing_the_channel must specify the dimension position before
      the change in input_op_names_and_order_dims.
      For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.

      e.g.
      --channel_change_inputs aaa 3 \
      --channel_change_inputs bbb 1 \
      --channel_change_inputs ccc 5

  --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scc4onnx import order_conversion
>>> help(order_conversion)
Help on function order_conversion in module scc4onnx.onnx_input_order_converter:

order_conversion(
  input_op_names_and_order_dims: Union[dict, NoneType] = None,
  channel_change_inputs: Union[dict, NoneType] = None,
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
    
    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.
    
    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
    
    input_op_names_and_order_dims: Optional[dict]
        Specify the name of the input_op to be dimensionally changed and
        the order of the dimensions after the change.
        The name of the input_op to be dimensionally changed
        can be specified multiple times.
    
        e.g.
        input_op_names_and_order_dims = {
            "input_op_name1": [0,3,1,2],
            "input_op_name2": [0,2,3,1],
            "input_op_name3": [0,3,1,2,4,5],
        }
    
    channel_change_inputs: Optional[dict]
        Change the channel order of RGB and BGR.
        If the original model is RGB, it is transposed to BGR.
        If the original model is BGR, it is transposed to RGB.
        It can be selectively specified from among the OP names
        specified in input_op_names_and_order_dims.
        OP names not specified in input_op_names_and_order_dims are ignored.
        Multiple times can be specified as many times as the number
        of OP names specified in input_op_names_and_order_dims.
        channel_change_inputs = {"op_name": dimension_number_representing_the_channel}
        dimension_number_representing_the_channel must specify
        the dimension position after the change in input_op_names_and_order_dims.
        For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
    
        e.g.
        channel_change_inputs = {
            "aaa": 1,
            "bbb": 3,
            "ccc": 2,
        }
    
    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False
    
    Returns
    -------
    order_converted_graph: onnx.ModelProto
        Order converted onnx ModelProto

4. CLI Execution

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

5. In-script Execution

from scc4onnx import order_conversion

order_converted_graph = order_conversion(
    onnx_graph=graph,
    input_op_names_and_order_dims={"left": [0,2,3,1], "right": [0,2,3,1]},
    channel_change_inputs={"left": 1, "right": 1},
    non_verbose=True,
)

6. Sample

6-1. Transpose only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1]

image image

6-2. Transpose + RGB<->BGR

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

6-3. RGB<->BGR only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Releases(1.0.5)
  • 1.0.5(Sep 9, 2022)

    • Add short form parameter
      $ scc4onnx -h
      
      usage:
        scc4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -of OUTPUT_ONNX_FILE_PATH
        [-ioo INPUT_OP_NAME ORDER_DIM]
        [-cci INPUT_OP_NAME DIM]
        [-n]
      
      optional arguments:
        -h, --help
            show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
            Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
            Output onnx file path.
      
        -ioo INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS, --input_op_names_and_order_dims INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS
            Specify the name of the input_op to be dimensionally changed and the order of the
            dimensions after the change.
            The name of the input_op to be dimensionally changed can be specified multiple times.
      
            e.g.
            --input_op_names_and_order_dims aaa [0,3,1,2] \
            --input_op_names_and_order_dims bbb [0,2,3,1] \
            --input_op_names_and_order_dims ccc [0,3,1,2,4,5]
      
        -cci CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS, --channel_change_inputs CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS
            Change the channel order of RGB and BGR.
            If the original model is RGB, it is transposed to BGR.
            If the original model is BGR, it is transposed to RGB.
            It can be selectively specified from among the OP names specified
            in --input_op_names_and_order_dims.
            OP names not specified in --input_op_names_and_order_dims are ignored.
            Multiple times can be specified as many times as the number of OP names specified
            in --input_op_names_and_order_dims.
            --channel_change_inputs op_name dimension_number_representing_the_channel
            dimension_number_representing_the_channel must specify the dimension position before
            the change in input_op_names_and_order_dims.
            For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
      
            e.g.
            --channel_change_inputs aaa 3 \
            --channel_change_inputs bbb 1 \
            --channel_change_inputs ccc 5
      
        -n, --non_verbose
            Do not show all information logs. Only error logs are displayed.
      

    Full Changelog: https://github.com/PINTO0309/scc4onnx/compare/1.0.4...1.0.5

    Source code(tar.gz)
    Source code(zip)
  • 1.0.4(May 25, 2022)

  • 1.0.3(May 15, 2022)

  • 1.0.2(May 10, 2022)

  • 1.0.1(Apr 19, 2022)

  • 1.0.0(Apr 18, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023