Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

Overview

MusCaps: Generating Captions for Music Audio

Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1
1 Queen Mary University of London, 2 Universal Music Group

This repository is the official implementation of "MusCaps: Generating Captions for Music Audio" (IJCNN 2021). In this work, we propose an encoder-decoder model to generate natural language descriptions of music audio. We provide code to train our model on any dataset of (audio, caption) pairs, together with code to evaluate the generated descriptions on a set of automatic metrics (BLEU, METEOR, ROUGE, CIDEr, SPICE, SPIDEr).

Setup

The code was developed in Python 3.7 on Linux CentOS 7 and training was carried out on an RTX 2080 Ti GPU. Other GPUs and platforms have not been fully tested.

Clone the repo

git clone https://github.com/ilaria-manco/muscaps
cd muscaps

You'll need to have the libsndfile library installed. All other requirements, including the code package, can be installed with

pip install -r requirements.txt
pip install -e .

Project structure

root
├─ configs                      # Config files
│   ├─ datasets
│   ├─ models  
│   └─ default.yaml              
├─ data                         # Folder to save data (input data, pretrained model weights, etc.)
│   ├─ audio_encoders   
│   ├─ datasets            
│   │   └─ dataset_name     
|   └── ...             
├─ muscaps
|   ├─ caption_evaluation_tools # Translation metrics eval on audio captioning 
│   ├─ datasets                 # Dataset classes
│   ├─ models                   # Model code
│   ├─ modules                  # Model components
│   ├─ scripts                  # Python scripts for training, evaluation etc.
│   ├─ trainers                 # Trainer classes
│   └─ utils                    # Utils
└─ save                         # Saved model checkpoints, logs, configs, predictions    
    └─ experiments
        ├── experiment_id1
        └── ...                  

Dataset

The datasets used in our experiments is private and cannot be shared, but details on how to prepare an equivalent music captioning dataset are provided in the data README.

Pre-trained audio feature extractors

For the audio feature extraction component, MusCaps uses CNN-based audio tagging models like musicnn. In our experiments, we use @minzwon's implementation and pre-trained models, which you can download from the official repo. For example, to obtain the weights for the HCNN model trained on the MagnaTagATune dataset, run the following commands

mkdir data/audio_encoders
cd data/audio_encoders/
wget https://github.com/minzwon/sota-music-tagging-models/raw/master/models/mtat/hcnn/best_model.pth
mv best_model.pth mtt_hcnn.pth

Training

Dataset, model and training configurations are set in the respective yaml files in configs. Some of the fields can be overridden by arguments in the CLI (for more details on this, refer to the training script).

To train the model with the default configs, simply run

cd muscaps/scripts/
python train.py <baseline/attention> --feature_extractor <musicnn/hcnn> --pretrained_model <msd/mtt>  --device_num <gpu_number>

This will generate an experiment_id and create a new folder in save/experiments where the output will be saved.

If you wish to resume training from a saved checkpoint, run

python train.py <baseline/attention> --experiment_id <experiment_id>  --device_num <gpu_number>

Evaluation

To evaluate a model saved under <experiment_id> on the captioning task, run

cd muscaps/scripts/
python caption.py <experiment_id> --metrics True

Cite

@misc{manco2021muscaps,
      title={MusCaps: Generating Captions for Music Audio}, 
      author={Ilaria Manco and Emmanouil Benetos and Elio Quinton and Gyorgy Fazekas},
      year={2021},
      eprint={2104.11984},
      archivePrefix={arXiv}
}

Acknowledgements

This repo reuses some code from the following repos:

Contact

If you have any questions, please get in touch: [email protected].

Owner
Ilaria Manco
AI & Music PhD Researcher at the Centre for Digital Music (QMUL)
Ilaria Manco
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022