Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

Overview

rethink-audio-fsl

This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021)

Table of Contents

Dataset

Models in this work are trained on FSD-MIX-CLIPS, an open dataset of programmatically mixed audio clips with a controlled level of polyphony and signal-to-noise ratio. We use single-labeled clips from FSD50K as the source material for the foreground sound events and Brownian noise as the background to generate 281,039 10-second strongly-labeled soundscapes with Scaper. We refer this (intermediate) dataset of 10s soundscapes as FSD-MIX-SED. Each soundscape contains n events from n different sound classes where n is ranging from 1 to 5. We then extract 614,533 1s clips centered on each sound event in the soundscapes in FSD-MIX-SED to produce FSD-MIX-CLIPS.

Due to the large size of the dataset, instead of releasing the raw audio files, we release the source material, a subset of FSD50K, and soundscape annotations in JAMS format which can be used to reproduce FSD-MIX-SED using Scaper. All clips in FSD-MIX-CLIPS are extracted from FSD-MIX-SED. Therefore, for FSD-MIX-CLIPS, instead of releasing duplicated audio content, we provide annotations that specify the filename in FSD-MIX-SED and the corresponding starting time (in second) of each 1-second clip.

To reproduce FSD-MIX-SED:

  1. Download all files from Zenodo.
  2. Extract .tar.gz files. You will get
  • FSD_MIX_SED.annotations: 281,039 annotation files, 35GB
  • FSD_MIX_SED.source: 10,296 single-labeled audio clips, 1.9GB
  • FSD_MIX_CLIPS.annotations: 5 annotation files for each class/data split
  • vocab.json: 89 classes, each class is then labeled by its index in the list in following experiments. 0-58: base, 59-73: novel-val, 74-88: novel-test.

We will use FSD_MIX_SED.annotations and FSD_MIX_SED.source to reproduce the audio data in FSD_MIX_SED, and use the audio with FSD_MIX_CLIPS.annotation for the following training and evaluation.

  1. Install Scaper
  2. Generate soundscapes from jams files by running the command. Set annpaths and audiopath to the extracted folders, and savepath to the desired path to save output audio files.
python ./data/generate_soundscapes.py \
--annpath PATH-TO-FSD_MIX_SED.annotations \
--audiopath PATH-TO-FSD_MIX_SED.source \
--savepath PATH-TO-SAVE-OUTPUT

Note that this will generate 281,039 audio files with a size of ~450GB to the folder FSD_MIX_SED.audio at the set savepath.

If you want to get the foreground material (FSD-MIX-SED.source) directly from FSD50K instead of downloading them, run

python ./data/preprocess_foreground_sounds.py \
--fsdpath PATH-TO-FSD50K \
--outpath PATH_TO_SAVE_OUTPUT

Experiment

We provide source code to train the best performing embedding model (pretrained OpenL3 + FC) and three different few-shot methods to predict both base and novel class data.

Preprocessing

Once audio files are reproduced, we pre-compute OpenL3 embeddings of clips in FSD-MIX-CLIPS and save them.

  1. Install OpenL3
  2. Set paths of the downloaded FSD_MIX_CLIPS.annotations and generated FSD_MIX_SED.audio, and run
python get_openl3emb_and_filelist.py \
--annpath PATH-TO-FSD_MIX_CLIPS.annotations \
--audiopath PATH-TO-FSD_MIX_SED.audio \
--savepath PATH_TO_SAVE_OUTPUT

This generates 614,533 .pkl files where each file contains an embedding. A set of filelists will also be saved under current folder.

Environment

Create conda environment from the environment.yml file and activate it.

Note that you only need the environment if you want to train/evaluate the models. For reproducing the dataset, see Dataset.

conda env create -f environment.yml
conda activate dfsl

Training

  • Training configuration can be specified using config files in ./config
  • Model checkpoints will be saved in the folder ./experiments, and tensorboard data will be saved in the folder ./run

1. Base classifier

First, to train the base classifier on base classes, run

python train.py --config openl3CosineClassifier --openl3

2. Few-shot weight generator for DFSL

Once the base model is trained, we can train the few-shot weight generator for DFSL by running

python train.py --config openl3CosineClassifierGenWeightAttN5 --openl3

By default, DFSL is trained with 5 support examples: n=5, to train DFSL with different n, run

# n=10
python train.py --config openl3CosineClassifierGenWeightAttN10 --openl3

# n=20
python train.py --config openl3CosineClassifierGenWeightAttN20 --openl3

# n=30
python train.py --config openl3CosineClassifierGenWeightAttN30 --openl3

Evaluation

We evaluate the trained models on test data from both base and novel classes. For each novel class, we need to sample a support set. Run the command below to split the original filelist for test classes to test_support_filelist.pkl and test_query_filelist.pkl.

python get_test_support_and_query.py
  • Here we consider monophonic support examples with mixed(random) SNR. Code to run evaluation with polyphonic support examples with specific low/high SNR will be released soon.

For evaluation, we compute features for both base and novel test data, then make predictions and compute metrics in a joint label space. The computed features, model predictions, and metrics will be saved in the folder ./experiments. We consider 3 few-shot methods to predict novel classes. To test different number of support examples, set different n_pos in the following commands.

1. Prototype

# Extract embeddings of evaluation data and save them.
python save_features.py --config=openl3CosineClassifier --openl3

# Get and save model prediction, run this multiple time (niter) to count for random selection of novel examples.
python pred.py --config=openl3CosineClassifier --openl3 --niter 100 --n_base 59 --n_novel 15 --n_pos 5

# compute and save evaluation metrics based on model prediction
python metrics.py --config=audioset_pannCosineClassifier --openl3 --n_base 59 --n_novel 15 --n_pos 5

2. DFSL

# Extract embeddings of evaluation data and save them.
python save_features.py --config=openl3CosineClassifierGenWeightAttN5 --openl3

# Get and save model prediction, run this multiple time (niter) to count for random selection of novel examples.
python pred.py --config=openl3CosineClassifierGenWeightAttN5 --openl3 --niter 100 --n_base 59 --n_novel 15 --n_pos 5

# compute and save evaluation metrics based on model prediction
python metrics.py --config=audioset_pannCosineClassifierGenWeightAttN5 --openl3 --n_base 59 --n_novel 15 --n_pos 5

3. Logistic regression

Train a binary logistic regression model for each novel class. Note that we need to sample n_neg of examples from the base training data as the negative examples. Default n_neg is 100. We also did a hyperparameter search on n_neg based on the validation data while n_pos changing from 5 to 30:

  • n_pos=5, n_neg=100
  • n_pos=10, n_neg=500
  • n_pos=20, n_neg=1000
  • n_pos=30, n_neg=5000
# Extract embeddings of evaluation data and save them.
python save_features.py --config=openl3CosineClassifier --openl3

# Train binary logistic regression models, predict test data, and compute metrics
python logistic_regression.py --config=openl3CosineClassifier --openl3 --niter 10 --n_base 59 --n_novel 15 --n_pos 5 --n_neg 100

Reference

This code is built upon the implementation from FewShotWithoutForgetting

Citation

Please cite our paper if you find the code or dataset useful for your research.

Y. Wang, N. J. Bryan, J. Salamon, M. Cartwright, and J. P. Bello. "Who calls the shots? Rethinking Few-shot Learning for Audio", IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2021

Owner
Yu Wang
Ph.D. Candidate
Yu Wang
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022