My personal code and solution to the Synacor Challenge from 2012 OSCON.

Overview

Synacor OSCON Challenge Solution (2012)

This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge.

If you are interested in checking out or trying the challenge for yourself, it can be found online still here:

https://challenge.synacor.com/

Notes

Firstly, please understand this is an old challenge. I am not the first to solve it, not even close, and this was solely done because a friend suggested it to me on Discord this past week. I never saw the challenge before and since it involved implementation of a VM, it was something I was interested in checking out since it has been a topic I've been involved in recently.

Next, the challenge is still online and fully functional. Because of that, it is important to note that if you do sign up and decide to try the challenge, the information in this solution will work but the flags (codes) you need will be different. The challenge generates unique flags for each player. (The challenge.bin data file is unique to each player.) If you try to use my flags, you will get an error.

Lastly, I used this challenge as a means to continue with my progress of learning Python. So please excuse the messy code and probably poor / old means of which I did some things. I'm sure there are much better ways to code various things I made, but I am still fairly new to Python.

Repository Information

You can read my full solution here: Full Solution

In order to solve the challenge, the main task you are given is to implement a virtual machine that can emulate the given opcodes found within the challenge arch-spec file. To handle this part of the challenge, and assisting with other parts, I wrote the virtual machine and a disassembler for the binary data file in Python.

Throughout the challenge, once the VM is functional, there are puzzles to be solved. The three puzzles all required their own implementation of code to be solved. Two of the puzzles I was able to solve in Python, however the other was too slow to implement in Python alone. Instead, I opt'd to use C++ for that one instead. (I made a Python implementation using ghetto threading, but it's ugly and slow so not worth including.)

The first puzzle is within the Ruins area of the game. My solver for that can be found here:

The next puzzle, which required the C++ implementation to not be ungodly slow, is for the teleporter item puzzle. That can be found here:

The final puzzle, in the Vault area, can be solved with my solution here:

Other files included in the repo are:

Challenge Information

== Synacor Challenge ==
In this challenge, your job is to use this architecture spec to create a
virtual machine capable of running the included binary.  Along the way,
you will find codes; submit these to the challenge website to track
your progress.  Good luck!


== architecture ==
- three storage regions
  - memory with 15-bit address space storing 16-bit values
  - eight registers
  - an unbounded stack which holds individual 16-bit values
- all numbers are unsigned integers 0..32767 (15-bit)
- all math is modulo 32768; 32758 + 15 => 5

== binary format ==
- each number is stored as a 16-bit little-endian pair (low byte, high byte)
- numbers 0..32767 mean a literal value
- numbers 32768..32775 instead mean registers 0..7
- numbers 32776..65535 are invalid
- programs are loaded into memory starting at address 0
- address 0 is the first 16-bit value, address 1 is the second 16-bit value, etc

== execution ==
- After an operation is executed, the next instruction to read is immediately after the last argument of the current operation.  If a jump was performed, the next operation is instead the exact destination of the jump.
- Encountering a register as an operation argument should be taken as reading from the register or setting into the register as appropriate.

== hints ==
- Start with operations 0, 19, and 21.
- Here's a code for the challenge website: fNCoeXxLEawt
- The program "9,32768,32769,4,19,32768" occupies six memory addresses and should:
  - Store into register 0 the sum of 4 and the value contained in register 1.
  - Output to the terminal the character with the ascii code contained in register 0.

== opcode listing ==
halt: 0
  stop execution and terminate the program
set: 1 a b
  set register <a> to the value of <b>
push: 2 a
  push <a> onto the stack
pop: 3 a
  remove the top element from the stack and write it into <a>; empty stack = error
eq: 4 a b c
  set <a> to 1 if <b> is equal to <c>; set it to 0 otherwise
gt: 5 a b c
  set <a> to 1 if <b> is greater than <c>; set it to 0 otherwise
jmp: 6 a
  jump to <a>
jt: 7 a b
  if <a> is nonzero, jump to <b>
jf: 8 a b
  if <a> is zero, jump to <b>
add: 9 a b c
  assign into <a> the sum of <b> and <c> (modulo 32768)
mult: 10 a b c
  store into <a> the product of <b> and <c> (modulo 32768)
mod: 11 a b c
  store into <a> the remainder of <b> divided by <c>
and: 12 a b c
  stores into <a> the bitwise and of <b> and <c>
or: 13 a b c
  stores into <a> the bitwise or of <b> and <c>
not: 14 a b
  stores 15-bit bitwise inverse of <b> in <a>
rmem: 15 a b
  read memory at address <b> and write it to <a>
wmem: 16 a b
  write the value from <b> into memory at address <a>
call: 17 a
  write the address of the next instruction to the stack and jump to <a>
ret: 18
  remove the top element from the stack and jump to it; empty stack = halt
out: 19 a
  write the character represented by ascii code <a> to the terminal
in: 20 a
  read a character from the terminal and write its ascii code to <a>; it can be assumed that once input starts, it will continue until a newline is encountered; this means that you can safely read whole lines from the keyboard and trust that they will be fully read
noop: 21
  no operation
Owner
:rainbow: Self-taught programmer / reverse engineer. Game hacker / modder. Looking for support for any of my projects? Check my homepage.
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023