Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

Overview

TimeCycle

Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework, in version PyTorch 0.4 with Python 2. It also runs smoothly with PyTorch 1.0. This repo includes the training code for learning semi-dense correspondence from unlabeled videos, and testing code for applying this correspondence on segmentation mask tracking in videos.

Citation

If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.

@inproceedings{CVPR2019_CycleTime,
    Author = {Xiaolong Wang and Allan Jabri and Alexei A. Efros},
    Title = {Learning Correspondence from the Cycle-Consistency of Time},
    Booktitle = {CVPR},
    Year = {2019},
}

Model and Result

Our trained model can be downloaded from here. The tracking performance on DAVIS-2017 for this model (without training on DAVIS-2017) is:

cropSize J_mean J_recall J_decay F_mean F_recall F_decay
320 x 320 0.419 0.409 0.272 0.394 0.336 0.328
400 x 400 0.430 0.437 0.296 0.426 0.413 0.356
480 x 480 0.464 0.500 0.332 0.500 0.480 0.379

Note that one can easily improve the results in test time by increasing the input image size "cropSize" in the script. The training and testing procedures for this model are described as follows.

Converting Our Model to Standard Pytorch ResNet-50

Please see convert_model.ipynb for converting our model here to standard Pytorch ResNet-50 model format.

Dataset Preparation

Please read DATASET.md for downloading and preparing the VLOG dataset for training and DAVIS dataset for testing.

Training

Replace the input list in train_video_cycle_simple.py in the home folder as:

    params['filelist'] = 'YOUR_DATASET_FOLDER/vlog_frames_12fps.txt'

Then run the following code:

    python train_video_cycle_simple.py --checkpoint pytorch_checkpoints/release_model_simple

Testing

Replace the input list in test_davis.py in the home folder as:

    params['filelist'] = 'YOUR_DATASET_FOLDER/davis/DAVIS/vallist.txt'

Set up the dataset path YOUR_DATASET_FOLDER in run_test.sh . Then run the testing and evaluation code together:

    sh run_test.sh

Acknowledgements

weakalign by Ignacio Rocco, Relja Arandjelović and Josef Sivic.

inflated_convnets_pytorch by Yana Hasson.

pytorch-classification by Wei Yang.

Owner
Xiaolong Wang
Assistant Professor, UC San Diego
Xiaolong Wang
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022