SigOpt wrappers for scikit-learn methods

Overview

SigOpt + scikit-learn Interfacing

Build Status

This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together

Getting Started

Install the sigopt_sklearn python modules with pip install sigopt_sklearn.

Sign up for an account at https://sigopt.com. To use the interfaces, you'll need your API token from the API tokens page.

SigOptSearchCV

The simplest use case for SigOpt in conjunction with scikit-learn is optimizing estimator hyperparameters using cross validation. A short example that tunes the parameters of an SVM on a small dataset is provided below

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'

iris = datasets.load_iris()

# define parameter domains
svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

# define sklearn estimator
svr = svm.SVC()

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5,
    client_token=client_token, n_jobs=5, n_iter=20)

# perform CV search for best parameters and fits estimator
# on all data using best found configuration
clf.fit(iris.data, iris.target)

# clf.predict() now uses best found estimator
# clf.best_score_ contains CV score for best found estimator
# clf.best_params_ contains best found param configuration

The objective optimized by default is is the default score associated with an estimator. A custom objective can be used by passing the scoring option to the SigOptSearchCV constructor. Shown below is an example that uses the f1_score already implemented in sklearn

from sklearn.metrics import f1_score, make_scorer
f1_scorer = make_scorer(f1_score)

# define SigOptCV search strategy
clf = SigOptSearchCV(svr, svc_parameters, cv=5, scoring=f1_scorer,
    client_token=client_token, n_jobs=5, n_iter=50)

# perform CV search for best parameters
clf.fit(X, y)

XGBoostClassifier

SigOptSearchCV also works with XGBoost's XGBClassifier wrapper. A hyperparameter search over XGBClassifier models can be done using the same interface

import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
iris = datasets.load_iris()

xgb_params = {
  'learning_rate': (0.01, 0.5),
  'n_estimators': (10, 50),
  'max_depth': (3, 10),
  'min_child_weight': (6, 12),
  'gamma': (0, 0.5),
  'subsample': (0.6, 1.0),
  'colsample_bytree': (0.6, 1.)
}

xgbc = XGBClassifier()

clf = SigOptSearchCV(xgbc, xgb_params, cv=5,
    client_token=client_token, n_jobs=5, n_iter=70, verbose=1)

clf.fit(iris.data, iris.target)

SigOptEnsembleClassifier

This class concurrently trains and tunes several classification models within sklearn to facilitate model selection efforts when investigating new datasets.

You'll need to install the sigopt_sklearn library with the extra requirements of xgboost for this aspect of the library to work:

pip install sigopt_sklearn[ensemble]

A short example, using an activity recognition dataset is provided below We also have a video tutorial outlining how to run this example here:

SigOpt scikit-learn Tutorial

# Human Activity Recognition Using Smartphone
# https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip
unzip UCI\ HAR\ Dataset.zip
cd UCI\ HAR\ Dataset
import numpy as np
import pandas as pd
from sigopt_sklearn.ensemble import SigOptEnsembleClassifier

def load_datafile(filename):
  X = []
  with open(filename, 'r') as f:
    for l in f:
      X.append(np.array([float(v) for v in l.split()]))
  X = np.vstack(X)
  return X

X_train = load_datafile('train/X_train.txt')
y_train = load_datafile('train/y_train.txt').ravel()
X_test = load_datafile('test/X_test.txt')
y_test = load_datafile('test/y_test.txt').ravel()

# fit and tune several classification models concurrently
# find your SigOpt client token here : https://sigopt.com/tokens
sigopt_clf = SigOptEnsembleClassifier()
sigopt_clf.parallel_fit(X_train, y_train, est_timeout=(40 * 60),
    client_token='<YOUR_CLIENT_TOKEN>')

# compare model performance on hold out set
ensemble_train_scores = [est.score(X_train,y_train) for est in sigopt_clf.estimator_ensemble]
ensemble_test_scores = [est.score(X_test,y_test) for est in sigopt_clf.estimator_ensemble]
data = sorted(zip([est.__class__.__name__
                        for est in sigopt_clf.estimator_ensemble], ensemble_train_scores, ensemble_test_scores),
                        reverse=True, key=lambda x: (x[2], x[1]))
pd.DataFrame(data, columns=['Classifier ALGO.', 'Train ACC.', 'Test ACC.'])

CV Fold Timeouts

SigOptSearchCV performs evaluations on cv folds in parallel using joblib. Timeouts are now supported in the master branch of joblib and SigOpt can use this timeout information to learn to avoid hyperparameter configurations that are too slow.

from sklearn import svm, datasets
from sigopt_sklearn.search import SigOptSearchCV

# find your SigOpt client token here : https://sigopt.com/tokens
client_token = '<YOUR_SIGOPT_CLIENT_TOKEN>'
dataset = datasets.fetch_20newsgroups_vectorized()
X = dataset.data
y = dataset.target

# define parameter domains
svc_parameters  = {
  'kernel': ['linear', 'rbf'],
  'C': (0.5, 100),
  'max_iter': (10, 200),
  'tol': (1e-2, 1e-6)
}
svr = svm.SVC()

# SVM fitting can be quite slow, so we set timeout = 180 seconds
# for each fit.  SigOpt will then avoid configurations that are too slow
clf = SigOptSearchCV(svr, svc_parameters, cv=5, opt_timeout=180,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)

Categoricals

SigOptSearchCV supports categorical parameters specified as list of string as the kernel parameter is in the SVM example:

svc_parameters  = {'kernel': ['linear', 'rbf'], 'C': (0.5, 100)}

SigOpt also supports non-string valued categorical parameters. For example the hidden_layer_sizes parameter in the MLPRegressor example below,

parameters = {
  'activation': ['relu', 'tanh', 'logistic'],
  'solver': ['lbfgs', 'adam'],
  'alpha': (0.0001, 0.01),
  'learning_rate_init': (0.001, 0.1),
  'power_t': (0.001, 1.0),
  'beta_1': (0.8, 0.999),
  'momentum': (0.001, 1.0),
  'beta_2': (0.8, 0.999),
  'epsilon': (0.00000001, 0.0001),
  'hidden_layer_sizes': {
    'shallow': (100,),
    'medium': (10, 10),
    'deep': (10, 10, 10, 10)
  }
}
nn = MLPRegressor()
clf = SigOptSearchCV(nn, parameters, cv=5, cv_timeout=240,
    client_token=client_token, n_jobs=5, n_iter=40)

clf.fit(X, y)
Owner
SigOpt
SigOpt
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022