Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

Overview

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech

arXiv | GitHub Stars | downloads | Hugging Face | 中文文档

This repository is the official PyTorch implementation of our IJCAI-2022 paper, in which we propose SyntaSpeech for syntax-aware non-autoregressive Text-to-Speech.



Our SyntaSpeech is built on the basis of PortaSpeech (NeurIPS 2021) with three new features:

  1. We propose Syntactic Graph Builder (Sec. 3.1) and Syntactic Graph Encoder (Sec. 3.2), which is proved to be an effective unit to extract syntactic features to improve the prosody modeling and duration accuracy of TTS model.
  2. We introduce Multi-Length Adversarial Training (Sec. 3.3), which could replace the flow-based post-net in PortaSpeech, speeding up the inference time and improving the audio quality naturalness.
  3. We support three datasets: LJSpeech (single-speaker English dataset), Biaobei (single-speaker Chinese dataset) , and LibriTTS (multi-speaker English dataset).

Environments

conda create -n synta python=3.7
condac activate synta
pip install -U pip
pip install Cython numpy==1.19.1
pip install torch==1.9.0 
pip install -r requirements.txt
# install dgl for graph neural network, dgl-cu102 supports rtx2080, dgl-cu113 support rtx3090
pip install dgl-cu102 dglgo -f https://data.dgl.ai/wheels/repo.html 
sudo apt install -y sox libsox-fmt-mp3
bash mfa_usr/install_mfa.sh # install force alignment tools

Run SyntaSpeech!

Please follow the following steps to run this repo.

1. Preparation

Data Preparation

You can directly use our binarized datasets for LJSpeech and Biaobei. Download them and unzip them into the data/binary/ folder.

As for LibriTTS, you can download the raw datasets and process them with our data_gen modules. Detailed instructions can be found in dosc/prepare_data.

Vocoder Preparation

We provide the pre-trained model of vocoders for three datasets. Specifically, Hifi-GAN for LJSpeech and Biaobei, ParallelWaveGAN for LibriTTS. Download and unzip them into the checkpoints/ folder.

2. Training Example

Then you can train SyntaSpeech in the three datasets.

cd <the root_dir of your SyntaSpeech folder>
export PYTHONPATH=./
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset # training in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset # training in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset # training in LibriTTS

3. Tensorboard

tensorboard --logdir=checkpoints/lj_synta
tensorboard --logdir=checkpoints/biaobei_synta
tensorboard --logdir=checkpoints/libritts_synta

4. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset --infer # inference in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset --infer # inference in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset ---infer # inference in LibriTTS

Audio Demos

Audio samples in the paper can be found in our demo page.

We also provide HuggingFace Demo Page for LJSpeech. Try your interesting sentences there!

Citation

@article{ye2022syntaspeech,
  title={SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech},
  author={Ye, Zhenhui and Zhao, Zhou and Ren, Yi and Wu, Fei},
  journal={arXiv preprint arXiv:2204.11792},
  year={2022}
}

Acknowledgements

Our codes are based on the following repos:

Comments
  • pinyin preprocess problem

    pinyin preprocess problem

    005804 你当#1我傻啊#3?脑子#1那么大#2怎么#1塞进去#4? ni3 dang1 wo2 sha3 a5 nao3 zi5 na4 me5 da4 zen3 me5 sai1 jin4 qu4

    txt_struct=[['', ['']], ['你', ['n', 'i3']], ['当', ['d', 'ang1']], ['我', ['uo3']], ['傻', ['sh', 'a3']], ['啊', ['a', '?', 'n', 'ao3']], ['?', ['z', 'i']], ['脑', ['n', 'a4']], ['子', ['m', 'e']], ['那', ['d', 'a4']], ['么', ['z', 'en3']], ['大', ['m', 'e']], ['怎', ['s', 'ai1']], ['么', ['j', 'in4']], ['塞', ['q', 'v4', '?']], ['进', []], ['去', []], ['?', []], ['', ['']]]

    ph_gb_word=['', 'n_i3', 'd_ang1', 'uo3', 'sh_a3', 'a_?n_ao3', 'z_i', 'n_a4', 'm_e', 'd_a4', 'z_en3', 'm_e', 's_ai1', 'j_in4', 'q_v4?', '', '', '', '']

    what is 'a_?_n_ao3'

    in the mfa_dict it appears ch_a1_d_ou1 ,a_?_n_ao3 and so on

    opened by windowxiaoming 2
  • discriminator output['y_c'] never used

    discriminator output['y_c'] never used

    Discriminator's output['y_c'] never used, and never calculated in discriminator forward func. What does this variable mean? https://github.com/yerfor/SyntaSpeech/blob/5b07439633a3e714d2a6759ea4097eb36d6cd99a/tasks/tts/synta.py#L81

    opened by mayfool 2
  • A question of KL divergence calculation

    A question of KL divergence calculation

    In modules/tts/portaspeech/fvae.py, SyntaFVAE compute loss_kl (line 121) , Can someone help explain why loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1],I think loss_kl should be compute by loss_kl = logqx.exp()*(logqx - logpx) I would be very grateful if you could reply to me!

    opened by JiaYK 2
  • mfa for multi speaker.

    mfa for multi speaker.

    In the code, group MFA inputs for better parallelism. For multi speaker, it maybe go wrong. For input g_uang3 zh_ou1 n_v3 d_a4 x_ve2 sh_eng1 d_eng1 sh_an1 sh_i1 l_ian2 s_i4 t_ian1 j_ing3 f_ang1 zh_ao3 d_ao4 i2 s_i4 n_v3 sh_i1. The TexGrid is

    	item [1]:
    		class = "IntervalTier"
    		name = "words"
    		xmin = 0.0
    		xmax = 9.4444
    		intervals: size = 56
    			intervals [1]:
    				xmin = 0
    				xmax = 0.5700000000000001
    				text = ""
    			intervals [2]:
    				xmin = 0.5700000000000001
    				xmax = 0.61
    				text = "eng"
    			intervals [3]:
    				xmin = 0.61
    				xmax = 0.79
    				text = "s_an1"
    			intervals [4]:
    				xmin = 0.79
    				xmax = 0.89
    				text = "eng"
    			intervals [5]:
    				xmin = 0.89
    				xmax = 1.06
    				text = "i1"
    			intervals [6]:
    				xmin = 1.06
    				xmax = 1.24
    				text = "eng"
    			intervals [7]:
    				xmin = 1.24
    				xmax = 1.3
    				text = ""
    			intervals [8]:
    				xmin = 1.3
    				xmax = 1.36
    				text = "s_an1"
    			intervals [9]:
    				xmin = 1.36
    				xmax = 1.42
    				text = ""
    			intervals [10]:
    				xmin = 1.42
    				xmax = 1.49
    				text = "eng"
    			intervals [11]:
    				xmin = 1.49
    				xmax = 1.67
    				text = "s_i4"
    			intervals [12]:
    				xmin = 1.67
    				xmax = 1.78
    				text = "eng"
    			intervals [13]:
    				xmin = 1.78
    				xmax = 1.91
    				text = ""
    			intervals [14]:
    				xmin = 1.91
    				xmax = 1.96
    				text = "er4"
    			intervals [15]:
    				xmin = 1.96
    				xmax = 2.06
    				text = "eng"
    			intervals [16]:
    				xmin = 2.06
    				xmax = 2.19
    				text = ""
    			intervals [17]:
    				xmin = 2.19
    				xmax = 2.35
    				text = "i1"
    			intervals [18]:
    				xmin = 2.35
    				xmax = 2.53
    				text = "eng"
    			intervals [19]:
    				xmin = 2.53
    				xmax = 3.03
    				text = "i1"
    			intervals [20]:
    				xmin = 3.03
    				xmax = 3.42
    				text = "eng"
    			intervals [21]:
    				xmin = 3.42
    				xmax = 3.48
    				text = "i1"
    			intervals [22]:
    				xmin = 3.48
    				xmax = 3.6
    				text = ""
    			intervals [23]:
    				xmin = 3.6
    				xmax = 3.64
    				text = "eng"
    			intervals [24]:
    				xmin = 3.64
    				xmax = 3.86
    				text = "i1"
    			intervals [25]:
    				xmin = 3.86
    				xmax = 3.99
    				text = "eng"
    			intervals [26]:
    				xmin = 3.99
    				xmax = 4.59
    				text = ""
    			intervals [27]:
    				xmin = 4.59
    				xmax = 4.869999999999999
    				text = "er4"
    			intervals [28]:
    				xmin = 4.869999999999999
    				xmax = 4.9799999999999995
    				text = "eng"
    			intervals [29]:
    				xmin = 4.9799999999999995
    				xmax = 5.1899999999999995
    				text = "s_i4"
    			intervals [30]:
    				xmin = 5.1899999999999995
    				xmax = 5.34
    				text = ""
    			intervals [31]:
    				xmin = 5.34
    				xmax = 5.43
    				text = "eng"
    			intervals [32]:
    				xmin = 5.43
    				xmax = 5.6
    				text = ""
    			intervals [33]:
    				xmin = 5.6
    				xmax = 5.76
    				text = "i1"
    			intervals [34]:
    				xmin = 5.76
    				xmax = 6.279999999999999
    				text = "eng"
    			intervals [35]:
    				xmin = 6.279999999999999
    				xmax = 6.359999999999999
    				text = "s_an1"
    			intervals [36]:
    				xmin = 6.359999999999999
    				xmax = 6.47
    				text = ""
    			intervals [37]:
    				xmin = 6.47
    				xmax = 6.6
    				text = "eng"
    			intervals [38]:
    				xmin = 6.6
    				xmax = 6.9399999999999995
    				text = "i1"
    			intervals [39]:
    				xmin = 6.9399999999999995
    				xmax = 7.039999999999999
    				text = "eng"
    			intervals [40]:
    				xmin = 7.039999999999999
    				xmax = 7.289999999999999
    				text = "s_an1"
    			intervals [41]:
    				xmin = 7.289999999999999
    				xmax = 7.369999999999999
    				text = "eng"
    			intervals [42]:
    				xmin = 7.369999999999999
    				xmax = 7.6
    				text = "s_i4"
    			intervals [43]:
    				xmin = 7.6
    				xmax = 7.699999999999999
    				text = "eng"
    			intervals [44]:
    				xmin = 7.699999999999999
    				xmax = 7.869999999999999
    				text = ""
    			intervals [45]:
    				xmin = 7.869999999999999
    				xmax = 8.049999999999999
    				text = "er4"
    			intervals [46]:
    				xmin = 8.049999999999999
    				xmax = 8.26
    				text = ""
    			intervals [47]:
    				xmin = 8.26
    				xmax = 8.299999999999999
    				text = "eng"
    			intervals [48]:
    				xmin = 8.299999999999999
    				xmax = 8.36
    				text = "s_i4"
    			intervals [49]:
    				xmin = 8.36
    				xmax = 8.389999999999999
    				text = ""
    			intervals [50]:
    				xmin = 8.389999999999999
    				xmax = 8.42
    				text = "eng"
    			intervals [51]:
    				xmin = 8.42
    				xmax = 8.45
    				text = ""
    			intervals [52]:
    				xmin = 8.45
    				xmax = 8.59
    				text = "s_an1"
    			intervals [53]:
    				xmin = 8.59
    				xmax = 8.83
    				text = ""
    			intervals [54]:
    				xmin = 8.83
    				xmax = 9.1
    				text = "eng"
    			intervals [55]:
    				xmin = 9.1
    				xmax = 9.44
    				text = "i1"
    			intervals [56]:
    				xmin = 9.44
    				xmax = 9.4444
    				text = ""
    
    opened by leon2milan 2
  • Problem with DDP

    Problem with DDP

    Hello, I have experimented on your excellent job with this repo. But I found the ddp is not effective. I wonder if the way I used is wrong?

    CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node 3 tasks/run.py --config //fs.yaml --exp_name fs_test_demo --reset

    opened by zhazl 0
Releases(v1.0.0)
Owner
Zhenhui YE
I am currently a second-year computer science Ph.D student at Zhejiang University, working on deep learning and reinforcement learning.
Zhenhui YE
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022