MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

Overview

MoViNet-pytorch

Open In Colab Paper

Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition.
Authors: Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong (Google Research)
[Authors' Implementation]

Stream Buffer

stream buffer

Clean stream buffer

It is required to clean the buffer after all the clips of the same video have been processed.

model.clean_activation_buffers()

Usage

Open In Colab
Click on "Open in Colab" to open an example of training on HMDB-51

installation

pip install git+https://github.com/Atze00/MoViNet-pytorch.git

How to build a model

Use causal = True to use the model with stream buffer, causal = False will use standard convolutions

from movinets import MoViNet
from movinets.config import _C

MoViNetA0 = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
MoViNetA1 = MoViNet(_C.MODEL.MoViNetA1, causal = True, pretrained = True )
...
Load weights

Use pretrained = True to use the model with pretrained weights

    """
    If pretrained is True:
        num_classes is set to 600,
        conv_type is set to "3d" if causal is False, "2plus1d" if causal is True
        tf_like is set to True
    """
model = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
model = MoViNet(_C.MODEL.MoViNetA0, causal = False, pretrained = True )

Training loop examples

Training loop with stream buffer

def train_iter(model, optimz, data_load, n_clips = 5, n_clip_frames=8):
    """
    In causal mode with stream buffer a single video is fed to the network
    using subclips of lenght n_clip_frames. 
    n_clips*n_clip_frames should be equal to the total number of frames presents
    in the video.
    
    n_clips : number of clips that are used
    n_clip_frames : number of frame contained in each clip
    """
    
    #clean the buffer of activations
    model.clean_activation_buffers()
    optimz.zero_grad()
    for i, data, target in enumerate(data_load):
        #backward pass for each clip
        for j in range(n_clips):
          out = F.log_softmax(model(data[:,:,(n_clip_frames)*(j):(n_clip_frames)*(j+1)]), dim=1)
          loss = F.nll_loss(out, target)/n_clips
          loss.backward()
        optimz.step()
        optimz.zero_grad()
        
        #clean the buffer of activations
        model.clean_activation_buffers()

Training loop with standard convolutions

def train_iter(model, optimz, data_load):

    optimz.zero_grad()
    for i, (data,_ , target) in enumerate(data_load):
        out = F.log_softmax(model(data), dim=1)
        loss = F.nll_loss(out, target)
        loss.backward()
        optimz.step()
        optimz.zero_grad()

Pretrained models

Weights

The weights are loaded from the tensorflow models released by the authors, trained on kinetics.

Base Models

Base models implement standard 3D convolutions without stream buffers.

Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape
MoViNet-A0-Base 72.28 90.92 50 x 172 x 172
MoViNet-A1-Base 76.69 93.40 50 x 172 x 172
MoViNet-A2-Base 78.62 94.17 50 x 224 x 224
MoViNet-A3-Base 81.79 95.67 120 x 256 x 256
MoViNet-A4-Base 83.48 96.16 80 x 290 x 290
MoViNet-A5-Base 84.27 96.39 120 x 320 x 320
Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape**
MoViNet-A0-Stream 72.05 90.63 50 x 172 x 172
MoViNet-A1-Stream 76.45 93.25 50 x 172 x 172
MoViNet-A2-Stream 78.40 94.05 50 x 224 x 224

**In streaming mode, the number of frames correspond to the total accumulated duration of the 10-second clip.

*Accuracy reported on the official repository for the dataset kinetics 600, It has not been tested by me. It should be the same since the tf models and the reimplemented pytorch models output the same results [Test].

I currently haven't tested the speed of the streaming models, feel free to test and contribute.

Status

Currently are available the pretrained models for the following architectures:

  • MoViNetA1-BASE
  • MoViNetA1-STREAM
  • MoViNetA2-BASE
  • MoViNetA2-STREAM
  • MoViNetA3-BASE
  • MoViNetA3-STREAM
  • MoViNetA4-BASE
  • MoViNetA4-STREAM
  • MoViNetA5-BASE
  • MoViNetA5-STREAM

I currently have no plans to include streaming version of A3,A4,A5. Those models are too slow for most mobile applications.

Testing

I recommend to create a new environment for testing and run the following command to install all the required packages:
pip install -r tests/test_requirements.txt

Citations

@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022