Alignment Attention Fusion framework for Few-Shot Object Detection

Overview

AAF framework

Framework generalities

This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is to propose a flexible framework to implement various attention mechanisms for Few-Shot Object Detection. The framework is composed of 3 different modules: Spatial Alignment, Global Attention and Fusion Layer, which are applied successively to combine features from query and support images.

The inputs of the framework are:

  • query_features List[Tensor(B, C, H, W)]: Query features at different levels. For each level, the features are of shape Batch x Channels x Height x Width.
  • support_features List[Tensor(N, C, H', W')] : Support features at different level. First dimension correspond to the number of support images, regrouped by class: N = N_WAY * K_SHOT.
  • support_targets List[BoxList] bounding boxes for object in each support image.

The framework can be configured using a separate config file. Examples of such files are available under /config_files/aaf_framework/. The structure of these files is simple:

ALIGN_FIRST: #True/False Run Alignment before Attention when True
OUT_CH: # Number of features output by the fusion layer
ALIGNMENT:
    MODE: # Name of the alignment module selected
ATTENTION:
    MODE: # Name of the attention module selected
FUSION:
    MODE: # Name of the fusion module selected
File name Method Alignment Attention Fusion
identity.yaml Identity IDENTITY IDENTITY IDENTITY
feature_reweighting.yaml FSOD via feature reweighting IDENTITY REWEIGHTING_BATCH IDENTITY
meta_faster_rcnn.yaml Meta Faster-RCNN SIMILARITY_ALIGN META_FASTER META_FASTER
self_adapt.yaml Self-adaptive attention for FSOD IDENTITY_NO_REPEAT GRU IDENTITY
dynamic.yaml Dynamic relevance learning IDENTITY INTERPOLATE DYNAMIC_R
dana.yaml Dual Awarness Attention for FSOD CISA BGA HADAMARD

The path to the AAF config file should be specified inside the master config file (i.e. for the whole network) under FEWSHOT.AAF.CFG.

For each module, classes implementing the available choices are regrouped under a single file: /modelling/aaf/alignment.py, /modelling/aaf/attention.py and /modelling/aaf/fusion.py.

Spatial Alignment

Spatial Alignment reorganizes spatially the features of one feature map to match another one. The idea is to align similar features in both maps so that comparison is easier.

Name Description
IDENTITY Repeats the feature to match BNCHW and NBCHW dimensions
IDENTITY_NO_REPEAT Identity without repetition
SIMILARITY_ALIGN Compute similarity matrix between support and query and align support to query accordingly.
CISA CISA block from this method

### Global Attention Global Attention highlights some features of a map accordingly to an attention vector computed globally on another one. The idea is to leverage global and hopefully semantic information.

Name Description
IDENTITY Simply pass features to next modules.
REWEIGHTING Reweights query features using globally pooled vectors from support.
REWEIGHTING_BATCH Same as above but support examples are the same for the whole batch.
SELF_ATTENTION Same as above but attention vectors are computed from the alignment matrix between query and support.
BGA BGA blocks from this method
META_FASTER Attention block from this method
POOLING Pools query and support features to the same size.
INTERPOLATE Upsamples support features to match query size.
GRU Computes attention vectors through a graph representation using a GRU.

Fusion Layer

Combine directly the features from support and query. These maps must be of the same dimension for point-wise operation. Hence fusion is often employed along with alignment.

Name Description
IDENTITY Returns onlu adapted query features.
ADD Point-wise sum between query and support features.
HADAMARD Point-wise multiplication between query and support features.
SUBSTRACT Point-wise substraction between query and support features.
CONCAT Channel concatenation of query and support features.
META_FASTER Fusion layer from this method
DYNAMIC_R Fusion layer from this method

Training and evaluation

Training and evaluation scripts are available.

TODO: Give code snippet to run training with a specified config file (modify main) Basically create 2 scripts train.py and eval.py with arg config file.

DataHandler

Explain DataHandler class a bit.

Installation

Dependencies used for this projects can be installed through conda create --name <env> --file requirements.txt. Please note that these requirements are not all necessary and it will be updated soon.

FCOS must be installed from sources. But there might be some issue after installation depending on the version of the python packages you use.

  • cpu/vision.h file not found: replace all occurences in the FCOS source by vision.h (see this issue).
  • Error related to AT_CHECK with pytorch > 1.5 : replace all occurences by TORCH_CHECK (see this issue.
  • Error related to torch._six.PY36: replace all occurence of PY36 by PY37.

Results

Results on pascal VOC, COCO and DOTA.

Owner
Pierre Le Jeune
PhD Student in Few-shot object detection.
Pierre Le Jeune
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021