Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Related tags

Deep LearningRSA
Overview

Relational Self-Attention: What's Missing in Attention for Video Understanding

This repository is the official implementation of "Relational Self-Attention: What's Missing in Attention for Video Understanding" by Manjin Kim*, Heeseung Kwon*, Chunyu Wang, Suha Kwak, and Minsu Cho (*equal contribution).

RSA

Requirements

  • Python: 3.7.9
  • Pytorch: 1.6.0
  • TorchVision: 0.2.1
  • Cuda: 10.1
  • Conda environment environment.yml

To install requirements:

    conda env create -f environment.yml
    conda activate rsa

Dataset Preparation

  1. Download Something-Something v1 & v2 (SSv1 & SSv2) datasets and extract RGB frames. Download URLs: SSv1, SSv2
  2. Make txt files that define training & validation splits. Each line in txt files is formatted as [video_path] [#frames] [class_label]. Please refer to any txt files in ./data directory.

Training

To train RSANet-R50 on SSv1 or SSv2 datasets in the paper, run this command:

    # For SSv1
    ./scripts/train_Something_v1.sh 
    
    
     
    # example: ./scripts/train_Something_v1.sh RSA_R50_SSV1_16frames 16
    
    # For SSv2
    ./scripts/train_Something_v2.sh 
      
      
       
    # example: ./scripts/train_Something_v2.sh RSA_R50_SSV2_16frames 16

      
     
    
   

Evaluation

To evaluate RSANet-R50 on SSv2 dataset in the paper, run:

    # For SSv1
    ./scripts/test_Something_v1.sh 
    
     
     
      
    # example: ./scripts/test_Something_v1.sh RSA_R50_SSV1_16frames resnet_rgb_model_best.pth.tar 16
    
    # For SSv2
    ./scripts/test_Something_v2.sh 
       
        
        
          # example: ./scripts/test_Something_v2.sh RSA_R50_SSV2_16frames resnet_rgb_model_best.pth.tar 16 
        
       
      
     
    
   

Results

Our model achieves the following performance on Something-Something-V1 and Something-Something-V2:

model dataset frames top-1 / top-5 logs checkpoints
RSANet-R50 SSV1 16 54.0 % / 81.1 % [log] [checkpoint]
RSANet-R50 SSV2 16 66.0 % / 89.9 % [log] [checkpoint]

Qualitative Results

kernel_visualization

Owner
mandos
PH.D. student
mandos
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022