The mini-MusicNet dataset

Overview

mini-MusicNet

A music-domain dataset for multi-label classification

Music transcription is sequence-to-sequence prediction problem: given an audio performance, we must predict a corresponding sequence of notes. If we ignore correlations in the sequence of notes, music transcription simplifies to a multi-label classification problem. Given an audio performance, we are tasked with predicting the set of notes present in an audio performance at a given time. The mini-MusicNet dataset is derived from the MusicNet dataset, providing a scaled-down, pre-processed subset of MusicNet suitable for multi-label classification.

This repository provides information for downloading and interacting with mini-MusicNet, as well as some algorithmic baselines for multi-label classification with mini-MusicNet.

About mini-MusicNet

Download. The mini-MusicNet dataset can be downloaded here. To follow the tutorial in the next section or run explore.ipynb, please download mini-MusicNet to the minimusic sub-directory of the root of this repository.

This dataset consists of n = 82,500 data points with d = 4,096 features and k = 128 binary labels per datapoint. Each data point is an approximately 9ms audio clip: these clips are sampled at regular intervals from the underlying MusicNet dataset. Each clip is normalized to amplitudes in [-1,1]. The label on a datapoint is a binary k-dimensional (multi-hot) vector that indicates the notes being performed at the center of the audio clip. We define train, validation, and test splits with n = 62,500, 10,000, and 10,000 data points respectively. The mini-MusicNet dataset can be acquired here. Alternatively, you can use construct.py to reconstruct mini-MusicNet from a copy of MusicNet.

Exploring mini-MusicNet

To get started, let's load and visualize the training data. The contents of this section are summarized in the explore.ipynb notebook.

import numpy as np
import matplotlib.pyplot as plt

Xtrain = np.load('minimusic/audio-train.npy')
Ytrain = np.load('minimusic/labels-train.npy')

fig, ax = plt.subplots(1, 2, figsize=(10,2))
ax[0].set_title('Raw acoustic features')
ax[0].plot(Xtrain[0])
ax[1].set_title('Fourier transform of the raw features')
ax[1].plot(np.abs(np.fft.rfft(Xtrain[0])[0:256])) # clip to 256 features for easier visualization

Now let's see how linear (ridge) regression performs on the raw audio features. We'll measure results using average precision.

from sklearn.metrics import average_precision_score

Xtest = np.load('minimusic/audio-test.npy')
Ytest = np.load('minimusic/labels-test.npy')

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrain.T,Xtrain) + R*np.eye(Xtrain.shape[1])),np.dot(Xtrain.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrain, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtest, beta), average='micro'), 2))

Train AP: 0.19 Test AP: 0.04

That's not so great. We can do much better by transforming our audio wave to the Fourier domain.

Xtrainfft = np.abs(np.fft.rfft(Xtrain))
Xtestfft = np.abs(np.fft.rfft(Xtest))

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrainfft.T,Xtrainfft) + R*np.eye(Xtrainfft.shape[1])),np.dot(Xtrainfft.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrainfft, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtestfft, beta), average='micro'), 2))

Train AP: 0.57 Test AP: 0.47

Finally, it can often be more revealing to look at a precision-recall curve, rather than the scalar average precision (the area under the P/R curve). Let's see what our full P/R curve looks like for ridge regression on Fourier features.

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].set_title('Train P/R Curve')
plot_pr_curve(ax[0], Ytrain, np.dot(Xtrainfft, beta))
ax[1].set_title('Test P/R Curve')
plot_pr_curve(ax[1], Ytest, np.dot(Xtestfft, beta))

And that's enough to get us started! We hope that mini-MusicNet can be a useful resource for empirical work in multi-label classification.

References

For further information about MusicNet, or if you want to cite this work, please see:

@inproceedings{thickstun2017learning,
  author    = {John Thickstun and Zaid Harchaoui and Sham M. Kakade},
  title     = {Learning Features of Music from Scratch},
  booktitle = {International Conference on Learning Representations},
  year      = {2017},
}
Owner
John Thickstun
John Thickstun
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022