TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Related tags

Deep LearningTGRNet
Overview

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition." arXiv preprint arXiv:2106.10598 (2021).

This work has been accepted for presentation at ICCV2021. The preview version has released at arXiv.org (https://arxiv.org/abs/2106.10598).

Abstract

A table arranging data in rows and columns is a very effective data structure, which has been widely used in business and scientific research. Considering large-scale tabular data in online and offline documents, automatic table recognition has attracted increasing attention from the document analysis community. Though human can easily understand the structure of tables, it remains a challenge for machines to understand that, especially due to a variety of different table layouts and styles. Existing methods usually model a table as either the markup sequence or the adjacency matrix between different table cells, failing to address the importance of the logical location of table cells, e.g., a cell is located in the first row and the second column of the table. In this paper, we reformulate the problem of table structure recognition as the table graph reconstruction, and propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition. Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells. Experimental results on three popular table recognition datasets and a new dataset with table graph annotations (TableGraph-350K) demonstrate the effectiveness of the proposed TGRNet for table structure recognition.

Getting Started

Requirements

Create the environment from the environment.yml file conda env create --file environment.yml or install the software needed in your environment independently. If you meet some problems when installing PyTorch Geometric, please follow the official installation indroduction (https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html).

dependencies:
  - python==3.7.0
  - pip==20.2.4
  - pip:
    - dominate==2.5.1
    - imageio==2.8.0
    - networkx==2.3
    - numpy==1.18.2
    - opencv-python==4.4.0.46
    - pandas==1.0.3
    - pillow==7.1.1
    - torchfile==0.1.0
    - tqdm==4.45.0
    - visdom==0.1.8.9
    - Polygon3==3.0.8

PyTorch Installation

# CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
# CUDA 10.1
pip install torch==1.5.0+CU101 torchvision==0.6.0+CU101 -f https://download.pytorch.org/whl/torch_stable.html
# CUDA 9.2
pip install torch==1.5.0+CU92 torchvision==0.6.0+CU92 -f https://download.pytorch.org/whl/torch_stable.html

PyTorch Geometric Installation

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-sparse==0.6.3 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-geometric

where ${CUDA} should be replaced by your specific CUDA version (cu92, cu101, cu102).

Datasets Preparation

cd ./datasets
tar -zxvf datasets.tar.gz
## The './datasets/' folder should look like:
- datasets/
  - cmdd/
  - icdar13table/
  - icdar19_ctdar/
  - tablegraph24k/

Pretrained Models Preparation

IMPORTANT Acoording to feedbacks from users (I also tested by myself), the pretrained models may not work for some enviroments. I have tested the following enviroment that can work as expected.

  - CUDA 9.2
  - torch 1.7.0+torchvision 0.8.0
  - torch-cluster 1.5.9
  - torch-geometric 1.6.3
  - torch-scatter 2.0.6
  - torch-sparse 0.6.9
  - torch-spline-conv 1.2.1
  • Download pretrained models from Google Dive or Alibaba Cloud.
  • Put checkpoints.tar.gz in "./checkpoints/" and extract it.
cd ./checkpoints
tar -zxvf checkpoints.tar.gz
## The './checkpoints/' folder should look like:
- checkpoints/
  - cmdd_overall/
  - icdar13table_overall/
  - icdar19_lloc/
  - tablegraph24k_overall/

Test

We have prepared scripts for test and you can just run them.

- test_cmdd.sh
- test_icdar13table.sh
- test_tablegraph-24k.sh
- test_icdar19ctdar.sh

Train

Todo

Owner
Wenyuan
Beijing Jiaotong University
Wenyuan
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser

Federated_Learning πŸ’» This projest include common test models for federated lear

TianyuQi 10 Dec 11, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Implementation of the πŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022