TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

Overview

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++ is a novel multi-object TSDF formulation that can encode multiple object surfaces at each voxel. In a multiple dynamic object tracking and reconstruction scenario, a TSDF++ map representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. At the same time, the representation allows maintaining a single volume for the entire scene and all the objects therein, thus solving the fundamental challenge of scalability with respect to the number of objects in the scene and removing the need for an explicit occlusion handling strategy.

Citing

When using TSDF++ in your research, please cite the following publication:

Margarita Grinvald, Federico Tombari, Roland Siegwart, and Juan Nieto, TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction, in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video]

@article{grinvald2021tsdf,
  author={M. {Grinvald} and F. {Tombari} and R. {Siegwart} and J. {Nieto}},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  title={{TSDF++}: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction},
  year={2021},
}

Installation

The installation has been tested on Ubuntu 16.04 and Ubutnu 20.04.

Requirements

Install dependencies

Install ROS following the instructions at the ROS installation page. The full install (ros-kinetic-desktop-full, ros-melodic-desktop-full) are recommended.

Make sure to source your ROS setup.bash script by following the instructions on the ROS installation page.

Installation on Ubuntu

In your terminal, define the installed ROS version and name of the catkin workspace to use:

export ROS_VERSION=kinetic # (Ubuntu 16.04: kinetic, Ubuntu 18.04: melodic)
export CATKIN_WS=~/catkin_ws

If you don't have a catkin workspace yet, create a new one:

mkdir -p $CATKIN_WS/src && cd $CATKIN_WS
catkin init
catkin config --extend /opt/ros/$ROS_VERSION --merge-devel 
catkin config --cmake-args -DCMAKE_CXX_STANDARD=14 -DCMAKE_BUILD_TYPE=Release
wstool init src

Clone the tsdf-plusplus repository over HTTPS (no Github account required) and automatically fetch dependencies:

cd $CATKIN_WS/src
git clone https://github.com/ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_https.rosinstall
wstool update

Alternatively, clone over SSH (Github account required):

cd $CATKIN_WS/src
git clone [email protected]:ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_ssh.rosinstall
wstool update

Build and source the TSDF++ packages:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation
source ../devel/setup.bash # (bash shell: ../devel/setup.bash,  zsh shell: ../devel/setup.zsh)

Troubleshooting

Compilation freeze

By default catkin build on a computer with N CPU cores will run N make jobs simultaneously. If compilation seems to hang forever, it might be running low on RAM. Try limiting the number of maximum parallel build jobs through the -jN flag to a value way lower than your CPU count, i.e.

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j4

If it still freezes at compilation time, you can go as far as limiting the maximum number of parallel build jobs and max load to 1 through the -lN flag:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j1 -l1

License

The code is available under the MIT license.

Owner
ETHZ ASL
ETHZ ASL
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022