Lexical Substitution Framework

Overview

LexSubGen

Lexical Substitution Framework

This repository contains the code to reproduce the results from the paper:

Arefyev Nikolay, Sheludko Boris, Podolskiy Alexander, Panchenko Alexander, "Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution", Proceedings of the 28th International Conference on Computational Linguistics, 2020

Installation

Clone LexSubGen repository from github.com.

git clone https://github.com/Samsung/LexSubGen
cd LexSubGen

Setup anaconda environment

  1. Download and install conda
  2. Create new conda environment
    conda create -n lexsubgen python=3.7.4
  3. Activate conda environment
    conda activate lexsubgen
  4. Install requirements
    pip install -r requirements.txt
  5. Download spacy resources and install context2vec and word_forms from github repositories
    ./init.sh

Setup Web Application

If you do not plan to use the Web Application, skip this section and go to the next!

  1. Download and install NodeJS and npm.
  2. Run script for install dependencies and create build files.
bash web_app_setup.sh

Install lexsubgen library

python setup.py install

Results

Results of the lexical substitution task are presented in the following table. To reproduce them, follow the instructions above to install the correct dependencies.

Model SemEval COINCO
GAP [email protected] [email protected] [email protected] GAP [email protected] [email protected] [email protected]
OOC 44.65 16.82 12.83 18.36 46.3 19.58 15.03 12.99
C2V 55.82 7.79 5.92 11.03 48.32 8.01 6.63 7.54
C2V+embs 53.39 28.01 21.72 33.52 50.73 29.64 24.0 21.97
ELMo 53.66 11.58 8.55 13.88 49.47 13.58 10.86 11.35
ELMo+embs 54.16 32.0 22.2 31.82 52.22 35.96 26.62 23.8
BERT 54.42 38.39 27.73 39.57 50.5 42.56 32.64 28.73
BERT+embs 53.87 41.64 30.59 43.88 50.85 46.05 35.63 31.67
RoBERTa 56.74 32.25 24.26 36.65 50.82 35.12 27.35 25.41
RoBERTa+embs 58.74 43.19 31.19 44.61 54.6 46.54 36.17 32.1
XLNet 59.12 31.75 22.83 34.95 53.39 38.16 28.58 26.47
XLNet+embs 59.62 49.53 34.9 47.51 55.63 51.5 39.92 35.12

Results reproduction

Here we list XLNet reproduction commands that correspond to the results presented in the table above. Reproduction commands for all models you can find in scripts/lexsub-all-models.sh Besides saving to the 'run-directory' all results are saved using mlflow. To check them you can run mlflow ui in LexSubGen directory and then open the web page in a browser.

Also you can use pytest to check the reproducibility. But it may take a long time:

pytest tests/results_reproduction
  • XLNet:

XLNet Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet'

XLNet CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet'

XLNet with embeddings similarity Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet_embs'

XLNet with embeddings similarity CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet_embs'

Word Sense Induction Results

Model SemEval 2013 SemEval 2010
AVG AVG
XLNet 33.4 52.1
XLNet+embs 37.3 54.1

To reproduce these results use 2.3.0 version of transformers and the following command:

bash scripts/wsi.sh

Web application

You could use command line interface to run Web application.

# Run main server
lexsubgen-app run --host HOST 
                  --port PORT 
                  [--model-configs CONFIGS] 
                  [--start-ids START-IDS] 
                  [--start-all] 
                  [--restore-session]

Example:

# Run server and serve models BERT and XLNet. 
# For BERT create server for serving model and substitute generator instantly (load resources in memory).
# For XLNet create only server.
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --model-configs '["my_cool_configs/bert.jsonnet", "my_awesome_configs/xlnet.jsonnet"]' 
                  --start-ids '[0]'

# After shutting down server JSON file with session dumps in the '~/.cache/lexsubgen/app_session.json'.
# The content of this file looks like:
# [
#     'my_cool_configs/bert.jsonnet',
#     'my_awesome_configs/xlnet.jsonnet',
# ]
# You can restore it with flag 'restore-session'
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --restore-session
# BERT and XLNet restored now
Arguments:
Argument Default Description
--help Show this help message and exit
--host IP address of running server host
--port 5000 Port for starting the server
--model-configs [] List of file paths to the model configs.
--start-ids [] Zero-based indices of served models for which substitute generators will be created
--start-all False Whether to create substitute generators for all served models
--restore-session False Whether to restore session from previous Web application run

FAQ

  1. How to use gpu? - You can use environment variable CUDA_VISIBLE_DEVICES to use gpu for inference: export CUDA_VISIBLE_DEVICES='1' or CUDA_VISIBLE_DEVICES='1' before your command.
  2. How to run tests? - You can use pytest: pytest tests
Owner
Samsung
Samsung Electronics Co.,Ltd.
Samsung
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022