LETR: Line Segment Detection Using Transformers without Edges

Related tags

Deep LearningLETR
Overview

LETR: Line Segment Detection Using Transformers without Edges

Introduction

This repository contains the official code and pretrained models for Line Segment Detection Using Transformers without Edges. Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu. CVPR2021 (Oral)

In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention.

Model Pipeline

Changelog

05/07/2021: Code for LETR Basic Usage Demo are released.

04/30/2021: Code and pre-trained checkpoint for LETR are released.

Results and Checkpoints

Name sAP10 sAP15 sF10 sF15 URL
Wireframe 65.6 68.0 66.1 67.4 LETR-R101
YorkUrban 29.6 32.0 40.5 42.1 LETR-R50

Reproducing Results

Step1: Code Preparation

git clone https://github.com/mlpc-ucsd/LETR.git

Step2: Environment Installation

mkdir -p data
mkdir -p evaluation/data
mkdir -p exp


conda create -n letr python anaconda
conda activate letr
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install docopt

Step3: Data Preparation

To reproduce our results, you need to process two datasets, ShanghaiTech and YorkUrban. Files located at ./helper/wireframe.py and ./helper/york.py are both modified based on the code from L-CNN, which process the raw data from download.

  • ShanghaiTech Train Data
    • To Download (modified based on from L-CNN)
      cd data
      bash ../helper/gdrive-download.sh 1BRkqyi5CKPQF6IYzj_dQxZFQl0OwbzOf wireframe_raw.tar.xz
      tar xf wireframe_raw.tar.xz
      rm wireframe_raw.tar.xz
      python ../helper/wireframe.py ./wireframe_raw ./wireframe_processed
      
  • YorkUrban Train Data
    • To Download
      cd data
      wget https://www.dropbox.com/sh/qgsh2audfi8aajd/AAAQrKM0wLe_LepwlC1rzFMxa/YorkUrbanDB.zip
      unzip YorkUrbanDB.zip 
      python ../helper/york.py ./YorkUrbanDB ./york_processed
      
  • Processed Evaluation Data
    bash ./helper/gdrive-download.sh 1T4_6Nb5r4yAXre3lf-zpmp3RbmyP1t9q ./evaluation/data/wireframe.tar.xz
    bash ./helper/gdrive-download.sh 1ijOXv0Xw1IaNDtp1uBJt5Xb3mMj99Iw2 ./evaluation/data/york.tar.xz
    tar -vxf ./evaluation/data/wireframe.tar.xz -C ./evaluation/data/.
    tar -vxf ./evaluation/data/york.tar.xz -C ./evaluation/data/.
    rm ./evaluation/data/wireframe.tar.xz
    rm ./evaluation/data/york.tar.xz

Step4: Train Script Examples

  1. Train a coarse-model (a.k.a. stage1 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a0_train_stage1_res50.sh  res50_stage1 # LETR-R50  
    bash script/train/a1_train_stage1_res101.sh res101_stage1 # LETR-R101 
  2. Train a fine-model (a.k.a. stage2 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a2_train_stage2_res50.sh  res50_stage2  # LETR-R50
    bash script/train/a3_train_stage2_res101.sh res101_stage2 # LETR-R101 
  3. Fine-tune the fine-model with focal loss (a.k.a. stage2_focal model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a4_train_stage2_focal_res50.sh   res50_stage2_focal # LETR-R50
    bash script/train/a5_train_stage2_focal_res101.sh  res101_stage2_focal # LETR-R101 

Step5: Evaluation

  1. Evaluate models.
    # Evaluate sAP^10, sAP^15, sF^10, sF^15 (both Wireframe and YorkUrban datasets).
    bash script/evaluation/eval_stage1.sh [exp name]
    bash script/evaluation/eval_stage2.sh [exp name]
    bash script/evaluation/eval_stage2_focal.sh [exp name]

Citation

If you use this code for your research, please cite our paper:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Yifan and Xu, Weijian and Cheung, David and Tu, Zhuowen},
    title     = {Line Segment Detection Using Transformers Without Edges},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {4257-4266}
}

Acknowledgments

This code is based on the implementations of DETR: End-to-End Object Detection with Transformers.

Owner
mlpc-ucsd
mlpc-ucsd
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022