A collection of IPython notebooks covering various topics.

Overview

ipython-notebooks

This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subjects that I find interesting. I've included notebook viewer links below. Click the link to see a live rendering of the notebook.

Language

These notebooks contain introductory content such as an overview of the language and a review of IPython's functionality.

Introduction To Python
IPython Magic Commands

Libraries

Examples using a variety of popular "data science" Python libraries.

NumPy
SciPy
Matplotlib
Pandas
Statsmodels
Scikit-learn
Seaborn
NetworkX
PyMC
NLTK
DEAP
Gensim

Machine Learning Exercises

Implementations of the exercises presented in Andrew Ng's "Machine Learning" class on Coursera.

Exercise 1 - Linear Regression
Exercise 2 - Logistic Regression
Exercise 3 - Multi-Class Classification
Exercise 4 - Neural Networks
Exercise 6 - Support Vector Machines
Exercise 7 - K-Means Clustering & PCA
Exercise 8 - Anomaly Detection & Recommendation Systems

Tensorflow Deep Learning Exercises

Implementations of the assignments from Google's Udacity course on deep learning.

Assignment 1 - Intro & Data Prep
Assignment 2 - Regression & Neural Nets
Assignment 3 - Regularization
Assignment 4 - Convolutions
Assignment 5 - Word Embeddings
Assignment 6 - Recurrent Nets

Spark Big Data Labs

Lab exercises for the original Spark classes on edX.

Lab 0 - Learning Apache Spark
Lab 1 - Building A Word Count Application
Lab 2 - Web Server Log Analysis
Lab 3 - Text Analysis & Entity Resolution
Lab 4 - Introduction To Machine Learning
ML Lab 3 - Linear Regression
ML Lab 4 - Click-Through Rate Prediction
ML Lab 5 - Principal Component Analysis

Fast.ai Lessons

Notebooks from Jeremy Howard's fast.ai class.

Lesson 1 - Image Classification
Lesson 2 - Multi-label Classification
Lesson 3 - Structured And Time Series Data
Lesson 4 - Sentiment Classification
Lesson 5 - Recommendation Using Deep Learning
Lesson 6 - Language Modeling With RNNs
Lesson 7 - Convolutional Networks In Detail

Deep Learning With Keras

Notebooks using Keras to implement deep learning models.

Part 1 - Structured And Time Series Data
Part 2 - Convolutional Networks
Part 3 - Recommender Systems
Part 4 - Recurrent Networks
Part 5 - Anomaly Detection
Part 6 - Generative Adversarial Networks

Misc

Notebooks covering various interesting topics!

Comparison Of Various Code Optimization Methods
A Simple Time Series Analysis of the S&P 500 Index
An Intro To Probablistic Programming
Language Exploration Using Vector Space Models
Solving Problems With Dynamic Programming
Time Series Forecasting With Prophet
Markov Chains From Scratch
A Sampling Of Monte Carlo Methods

Owner
John Wittenauer
Data scientist, engineer, author, investor, entrepreneur
John Wittenauer
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022