Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Overview

Box_Discretization_Network

This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method [link], which won the championship.

PPT link [Google Drive][Baidu Cloud]

Generate your own JSON: [Google Drive][Baidu Cloud]

Brief introduction (in Chinese): [Google Drive][Baidu Cloud]

Competition related

Competition model and config files (it needs a lot of video memory):

  • Paper [Link] (Exploring the Capacity of Sequential-free Box Discretization Networkfor Omnidirectional Scene Text Detection)

  • Config file [BaiduYun Link]. Models below all use this config file except directory. Results below are the multi-scale ensemble results. The very details are described in our updated paper.

  • MLT 2017 Model [BaiduYun Link].

MLT 2017 Recall Precision Hmean
new 76.44 82.75 79.47
ReCTS Detection Recall Precision Hmean
new 93.97 92.76 93.36
HRSC_2016 Recall Precision Hmean TIoU-Hmean AP
IJCAI version 94.8 46.0 61.96 51.1 93.7
new 94.1 83.8 88.65 73.3 89.22
  • Online demo is updating (the old demo version used a wrong configuration). This demo uses the MLT model provided above. It can detect multi-lingual text but can only recognize English, Chinese, and most of the symbols.

Description

Please see our paper at [link].

The advantages:

  • BDN can directly produce compact quadrilateral detection box. (segmentation-based methods need additional steps to group pixels & such steps usually sensitive to outliers)
  • BDN can avoid label confusion (non-segmentation-based methods are mostly sensitive to label sequence, which can significantly undermine the detection result). Comparison on ICDAR 2015 dataset showing different methods’ ability of resistant to the label confusion issue (by adding rotated pseudo samples). Textboxes++, East, and CTD are all Sesitive-to-Label-Sequence methods.
Textboxes++ [code] East [code] CTD [code] Ours
Variances (Hmean) ↓ 9.7% ↓ 13.7% ↓ 24.6% ↑ 0.3%

Getting Started

A basic example for training and testing. This mini example offers a pure baseline that takes less than 4 hours (with 4 1080 ti) to finalize training with only official training data.

Install anaconda

Link:https://pan.baidu.com/s/1TGy6O3LBHGQFzC20yJo8tg psw:vggx

Step-by-step install

conda create --name mb
conda activate mb
conda install ipython
pip install ninja yacs cython matplotlib tqdm scipy shapely
conda install pytorch=1.0 torchvision=0.2 cudatoolkit=9.0 -c pytorch
conda install -c menpo opencv
export INSTALL_DIR=$PWD
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
cd $INSTALL_DIR
git clone https://github.com/Yuliang-Liu/Box_Discretization_Network.git
cd Box_Discretization_Network
python setup.py build develop
  • MUST USE torchvision=0.2

Pretrained model:

[Link] unzip under project_root

(This is ONLY an ImageNet Model With a few iterations on ic15 training data for a stable initialization)

ic15 data

Prepare data follow COCO format. [Link] unzip under datasets/

Train

After downloading data and pretrained model, run

bash quick_train_guide.sh

Test with [TIoU]

Run

bash my_test.sh

Put kes.json to ic15_TIoU_metric/ inside ic15_TIoU_metric/

Run (conda deactivate; pip install Polygon2)

python2 to_eval.py

Example results:

  • mask branch 79.4 (test segm.json by changing to_eval.py (line 10: mode=0) );
  • kes branch 80.4;
  • in .yaml, set RESCORING=True -> 80.8;
  • Set RESCORING=True and RESCORING_GAMA=0.8 -> 81.0;
  • One can try many other tricks such as CROP_PROB_TRAIN, ROTATE_PROB_TRAIN, USE_DEFORMABLE, DEFORMABLE_PSROIPOOLING, PNMS, MSR, PAN in the project, whcih were all tested effective to improve the results. To achieve state-of-the-art performance, extra data (syntext, MLT, etc.) and proper training strategies are necessary.

Visualization

Run

bash single_image_demo.sh

Citation

If you find our method useful for your reserach, please cite

@article{liu2019omnidirectional,
  title={Omnidirectional Scene Text Detection with Sequential-free Box Discretization},
  author={Liu, Yuliang and Zhang, Sheng and Jin, Lianwen and Xie, Lele and Wu, Yaqiang and Wang, Zhepeng},
  journal={IJCAI},
  year={2019}
}
@article{liu2019exploring,
  title={Exploring the Capacity of Sequential-free Box Discretization Network for Omnidirectional Scene Text Detection},
  author={Liu, Yuliang and He, Tong and Chen, Hao and Wang, Xinyu and Luo, Canjie and Zhang, Shuaitao and Shen, Chunhua and Jin, Lianwen},
  journal={arXiv preprint arXiv:1912.09629},
  year={2019}
}

Feedback

Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected] or [email protected]. For commercial usage, please contact Prof. Lianwen Jin via [email protected].

Owner
Yuliang Liu
MMLab; South China University of Technology; University of Adelaide
Yuliang Liu
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022