ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

Overview

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

This repository contains code, model, dataset for ChineseBERT at ACL2021.

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li

Guide

Section Description
Introduction Introduction to ChineseBERT
Download Download links for ChineseBERT
Quick tour Learn how to quickly load models
Experiment Experiment results on different Chinese NLP datasets
Citation Citation
Contact How to contact us

Introduction

We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining.

First, for each Chinese character, we get three kind of embedding.

  • Char Embedding: the same as origin BERT token embedding.
  • Glyph Embedding: capture visual features based on different fonts of a Chinese character.
  • Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.

Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

MODEL

ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.

Download

We provide pre-trained ChineseBERT models in Pytorch version and followed huggingFace model format.

  • ChineseBERT-base:12-layer, 768-hidden, 12-heads, 147M parameters
  • ChineseBERT-large: 24-layer, 1024-hidden, 16-heads, 374M parameters

Our model can be downloaded here:

Model Model Hub Size
ChineseBERT-base Pytorch 564M
ChineseBERT-large Pytorch 1.4G

Note: The model hub contains model, fonts and pinyin config files.

Quick tour

We train our model with Huggingface, so the model can be easily loaded.
Download ChineseBERT model and save at [CHINESEBERT_PATH].
Here is a quick tour to load our model.

>>> from models.modeling_glycebert import GlyceBertForMaskedLM

>>> chinese_bert = GlyceBertForMaskedLM.from_pretrained([CHINESEBERT_PATH])
>>> print(chinese_bert)

The complete example can be find here: Masked word completion with ChineseBERT

Another example to get representation of a sentence:

>>> from datasets.bert_dataset import BertDataset
>>> from models.modeling_glycebert import GlyceBertModel

>>> tokenizer = BertDataset([CHINESEBERT_PATH])
>>> chinese_bert = GlyceBertModel.from_pretrained([CHINESEBERT_PATH])
>>> sentence = '我喜欢猫'

>>> input_ids, pinyin_ids = tokenizer.tokenize_sentence(sentence)
>>> length = input_ids.shape[0]
>>> input_ids = input_ids.view(1, length)
>>> pinyin_ids = pinyin_ids.view(1, length, 8)
>>> output_hidden = chinese_bert.forward(input_ids, pinyin_ids)[0]
>>> print(output_hidden)
tensor([[[ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519],
         [ 0.0144, -0.2494, -0.1853,  ...,  0.0673,  0.0424, -0.1074],
         [ 0.0839, -0.2989, -0.2421,  ...,  0.0454, -0.1474, -0.1736],
         [-0.0499, -0.2983, -0.1604,  ..., -0.0550, -0.1863,  0.0226],
         [ 0.1428, -0.0682, -0.1310,  ..., -0.1126,  0.0440, -0.1782],
         [ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519]]],
       grad_fn=)

The complete code can be find HERE

Experiments

ChnSetiCorp

ChnSetiCorp is a dataset for sentiment analysis.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

THUCNews

THUCNews contains news in 10 categories.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

XNLI

XNLI is a dataset for natural language inference.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 79.7 78.6
BERT 79.0 78.2
BERT-wwm 79.4 78.7
RoBERTa 80.0 78.8
MacBERT 80.3 79.3
ChineseBERT 80.5 79.6
---- ----
RoBERTa-large 82.1 81.2
MacBERT-large 82.4 81.3
ChineseBERT-large 82.7 81.6

Training details and code can be find HERE

BQ

BQ Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 86.3 85.0
BERT 86.1 85.2
BERT-wwm 86.4 85.3
RoBERTa 86.0 85.0
MacBERT 86.0 85.2
ChineseBERT 86.4 85.2
---- ----
RoBERTa-large 86.3 85.8
MacBERT-large 86.2 85.6
ChineseBERT-large 86.5 86.0

Training details and code can be find HERE

LCQMC

LCQMC Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 89.8 87.2
BERT 89.4 87.0
BERT-wwm 89.6 87.1
RoBERTa 89.0 86.4
MacBERT 89.5 87.0
ChineseBERT 89.8 87.4
---- ----
RoBERTa-large 90.4 87.0
MacBERT-large 90.6 87.6
ChineseBERT-large 90.5 87.8

Training details and code can be find HERE

TNEWS

TNEWS is a 15-class short news text classification dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 58.24 58.33
BERT 56.09 56.58
BERT-wwm 56.77 56.86
RoBERTa 57.51 56.94
ChineseBERT 58.64 58.95
---- ----
RoBERTa-large 58.32 58.61
ChineseBERT-large 59.06 59.47

Training details and code can be find HERE

CMRC

CMRC is a machin reading comprehension task dataset.
Evaluation Metrics: EM

Model Dev Test
ERNIE 66.89 74.70
BERT 66.77 71.60
BERT-wwm 66.96 73.95
RoBERTa 67.89 75.20
MacBERT - -
ChineseBERT 67.95 95.7
---- ----
RoBERTa-large 70.59 77.95
ChineseBERT-large 70.70 78.05

Training details and code can be find HERE

OntoNotes

OntoNotes 4.0 is a Chinese named entity recognition dataset and contains 18 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 79.69 82.09 80.87
RoBERTa 80.43 80.30 80.37
ChineseBERT 80.03 83.33 81.65
---- ---- ----
RoBERTa-large 80.72 82.07 81.39
ChineseBERT-large 80.77 83.65 82.18

Training details and code can be find HERE

Weibo

Weibo is a Chinese named entity recognition dataset and contains 4 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 67.12 66.88 67.33
RoBERTa 68.49 67.81 68.15
ChineseBERT 68.27 69.78 69.02
---- ---- ----
RoBERTa-large 66.74 70.02 68.35
ChineseBERT-large 68.75 72.97 70.80

Training details and code can be find HERE

Contact

If you have any question about our paper/code/modal/data...
Please feel free to discuss through github issues or emails.
You can send email to [email protected] or [email protected]

Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022