PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

Overview

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection

Introduction

This is a pytorch implementation of Gen-LaneNet, which predicts 3D lanes from a single image. Specifically, Gen-LaneNet is a unified network solution that solves image encoding, spatial transform of features and 3D lane prediction simultaneously. The method refers to the ECCV 2020 paper:

'Gen-LaneNet: a generalized and scalable approach for 3D lane detection', Y Guo, etal. ECCV 2020. [eccv][arxiv]

Key features:

  • A geometry-guided lane anchor representation generalizable to novel scenes.

  • A scalable two-stage framework that decouples the learning of image segmentation subnetwork and geometry encoding subnetwork.

  • A synthetic dataset for 3D lane detection [repo] [data].

Another baseline

This repo also includes an unofficial implementation of '3D-LaneNet' in pytorch for comparison. The method refers to

"3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019. [paper]

Requirements

If you have Anaconda installed, you can directly import the provided environment file.

conda env update --file environment.yaml

Those important packages includes:

  • opencv-python 4.1.0.25
  • pytorch 1.4.0
  • torchvision 0.5.0
  • tensorboard 1.15.0
  • tensorboardx 1.7
  • py3-ortools 5.1.4041

Data preparation

The 3D lane detection method is trained and tested on the 3D lane synthetic dataset. Running the demo code on a single image should directly work. However, repeating the training, testing and evaluation requires to prepare the dataset:

If you prefer to build your own data splits using the dataset, please follow the steps described in the 3D lane synthetic dataset repository. All necessary codes are included here already.

Run the Demo

python main_demo_GenLaneNet_ext.py

Specifically, this code predict 3D lane from an image given known camera height and pitch angle. Pretrained models for the segmentation subnetwork and the 3D geometry subnetwork are loaded. Meanwhile, anchor normalization parameters wrt. the training set are also loaded. The demo code will produce lane predication from a single image visualized in the following figure.

The lane results are visualized in three coordinate frames, respectively image plane, virtual top-view, and ego-vehicle coordinate frame. The lane-lines are shown in the top row and the center-lines are shown in the bottom row.

How to train the model

Step 1: Train the segmentation subnetwork

The training of Gen-LaneNet requires to first train the segmentation subnetwork, ERFNet.

  • The training of the ERFNet is based on a pytorch implementation [repo] modified to train the model on the 3D lane synthetic dataset.

  • The trained model should be saved as 'pretrained/erfnet_model_sim3d.tar'. A pre-trained model is already included.

Step 2: Train the 3D-geometry subnetwork

python main_train_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to train the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.
  • The trained model will be saved in the directory corresponding to certain data split and model name, e.g. 'data_splits/illus_chg/Gen_LaneNet_ext/model*'.
  • The anchor offset std will be recorded for certain data split at the same time, e.g. 'data_splits/illus_chg/geo_anchor_std.json'.

The training progress can be monitored by tensorboard as follows.

cd datas_splits/Gen_LaneNet_ext
./tensorboard  --logdir ./

Batch testing

python main_test_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to test the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.

The batch testing code not only produces the prediction results, e.g., 'data_splits/illus_chg/Gen_LaneNet_ext/test_pred_file.json', but also perform full-range precision-recall evaluation to produce AP and max F-score.

Other methods

In './experiments', we include the training codes for other variants of Gen-LaneNet models as well as for the baseline method 3D-LaneNet as well as its extended version integrated with the new anchor proposed in Gen-LaneNet. Interested users are welcome to repeat the full set of ablation study reported in the gen-lanenet paper. For example, to train 3D-LaneNet:

cd experiments
python main_train_3DLaneNet.py

Evaluation

Stand-alone evaluation can also be performed.

cd tools
python eval_3D_lane.py

Basically, you need to set 'method_name' and 'data_split' properly to compare the predicted lanes against ground-truth lanes. Evaluation details can refer to the 3D lane synthetic dataset repository or the Gen-LaneNet paper. Overall, the evaluation metrics include:

  • Average Precision (AP)
  • max F-score
  • x-error in close range (0-40 m)
  • x-error in far range (40-100 m)
  • z-error in close range (0-40 m)
  • z-error in far range (40-100 m)

We show the evaluation results comparing two methods:

  • "3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019
  • "Gen-lanenet: a generalized and scalable approach for 3D lane detection", Y. Guo, etal., Arxiv, 2020 (GenLaneNet_ext in code)

Comparisons are conducted under three distinguished splits of the dataset. For simplicity, only lane-line results are reported here. The results from the code could be marginally different from that reported in the paper due to different random splits.

  • Standard
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 89.3 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet 90.1 88.1 0.061 0.496 0.012 0.214
  • Rare Subset
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.6 72.0 0.166 0.855 0.039 0.521
Gen-LaneNet 79.0 78.0 0.139 0.903 0.030 0.539
  • Illumination Change
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.9 72.5 0.115 0.601 0.032 0.230
Gen-LaneNet 87.2 85.3 0.074 0.538 0.015 0.232

Visualization

Visual comparisons to the ground truth can be generated per image when setting 'vis = True' in 'tools/eval_3D_lane.py'. We show two examples for each method under the data split involving illumination change.

  • 3D-LaneNet

  • Gen-LaneNet

Citation

Please cite the paper in your publications if it helps your research:

@article{guo2020gen,
  title={Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection},
  author={Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jinghao Miao, Jingao Wang, and Tae Eun Choe},
  booktitle={Computer Vision - {ECCV} 2020 - 16th European Conference},
  year={2020}
}

Copyright and License

The copyright of this work belongs to Baidu Apollo, which is provided under the Apache-2.0 license.

Owner
Yuliang Guo
Researcher in Computer Vision
Yuliang Guo
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023