PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

Overview

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection

Introduction

This is a pytorch implementation of Gen-LaneNet, which predicts 3D lanes from a single image. Specifically, Gen-LaneNet is a unified network solution that solves image encoding, spatial transform of features and 3D lane prediction simultaneously. The method refers to the ECCV 2020 paper:

'Gen-LaneNet: a generalized and scalable approach for 3D lane detection', Y Guo, etal. ECCV 2020. [eccv][arxiv]

Key features:

  • A geometry-guided lane anchor representation generalizable to novel scenes.

  • A scalable two-stage framework that decouples the learning of image segmentation subnetwork and geometry encoding subnetwork.

  • A synthetic dataset for 3D lane detection [repo] [data].

Another baseline

This repo also includes an unofficial implementation of '3D-LaneNet' in pytorch for comparison. The method refers to

"3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019. [paper]

Requirements

If you have Anaconda installed, you can directly import the provided environment file.

conda env update --file environment.yaml

Those important packages includes:

  • opencv-python 4.1.0.25
  • pytorch 1.4.0
  • torchvision 0.5.0
  • tensorboard 1.15.0
  • tensorboardx 1.7
  • py3-ortools 5.1.4041

Data preparation

The 3D lane detection method is trained and tested on the 3D lane synthetic dataset. Running the demo code on a single image should directly work. However, repeating the training, testing and evaluation requires to prepare the dataset:

If you prefer to build your own data splits using the dataset, please follow the steps described in the 3D lane synthetic dataset repository. All necessary codes are included here already.

Run the Demo

python main_demo_GenLaneNet_ext.py

Specifically, this code predict 3D lane from an image given known camera height and pitch angle. Pretrained models for the segmentation subnetwork and the 3D geometry subnetwork are loaded. Meanwhile, anchor normalization parameters wrt. the training set are also loaded. The demo code will produce lane predication from a single image visualized in the following figure.

The lane results are visualized in three coordinate frames, respectively image plane, virtual top-view, and ego-vehicle coordinate frame. The lane-lines are shown in the top row and the center-lines are shown in the bottom row.

How to train the model

Step 1: Train the segmentation subnetwork

The training of Gen-LaneNet requires to first train the segmentation subnetwork, ERFNet.

  • The training of the ERFNet is based on a pytorch implementation [repo] modified to train the model on the 3D lane synthetic dataset.

  • The trained model should be saved as 'pretrained/erfnet_model_sim3d.tar'. A pre-trained model is already included.

Step 2: Train the 3D-geometry subnetwork

python main_train_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to train the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.
  • The trained model will be saved in the directory corresponding to certain data split and model name, e.g. 'data_splits/illus_chg/Gen_LaneNet_ext/model*'.
  • The anchor offset std will be recorded for certain data split at the same time, e.g. 'data_splits/illus_chg/geo_anchor_std.json'.

The training progress can be monitored by tensorboard as follows.

cd datas_splits/Gen_LaneNet_ext
./tensorboard  --logdir ./

Batch testing

python main_test_GenLaneNet_ext.py
  • Set 'args.dataset_name' to a certain data split to test the model.
  • Set 'args.dataset_dir' to the folder saving the raw dataset.

The batch testing code not only produces the prediction results, e.g., 'data_splits/illus_chg/Gen_LaneNet_ext/test_pred_file.json', but also perform full-range precision-recall evaluation to produce AP and max F-score.

Other methods

In './experiments', we include the training codes for other variants of Gen-LaneNet models as well as for the baseline method 3D-LaneNet as well as its extended version integrated with the new anchor proposed in Gen-LaneNet. Interested users are welcome to repeat the full set of ablation study reported in the gen-lanenet paper. For example, to train 3D-LaneNet:

cd experiments
python main_train_3DLaneNet.py

Evaluation

Stand-alone evaluation can also be performed.

cd tools
python eval_3D_lane.py

Basically, you need to set 'method_name' and 'data_split' properly to compare the predicted lanes against ground-truth lanes. Evaluation details can refer to the 3D lane synthetic dataset repository or the Gen-LaneNet paper. Overall, the evaluation metrics include:

  • Average Precision (AP)
  • max F-score
  • x-error in close range (0-40 m)
  • x-error in far range (40-100 m)
  • z-error in close range (0-40 m)
  • z-error in far range (40-100 m)

We show the evaluation results comparing two methods:

  • "3d-lanenet: end-to-end 3d multiple lane detection", N. Garnet, etal., ICCV 2019
  • "Gen-lanenet: a generalized and scalable approach for 3D lane detection", Y. Guo, etal., Arxiv, 2020 (GenLaneNet_ext in code)

Comparisons are conducted under three distinguished splits of the dataset. For simplicity, only lane-line results are reported here. The results from the code could be marginally different from that reported in the paper due to different random splits.

  • Standard
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 89.3 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet 90.1 88.1 0.061 0.496 0.012 0.214
  • Rare Subset
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.6 72.0 0.166 0.855 0.039 0.521
Gen-LaneNet 79.0 78.0 0.139 0.903 0.030 0.539
  • Illumination Change
Method AP F-Score x error near (m) x error far (m) z error near (m) z error far (m)
3D-LaneNet 74.9 72.5 0.115 0.601 0.032 0.230
Gen-LaneNet 87.2 85.3 0.074 0.538 0.015 0.232

Visualization

Visual comparisons to the ground truth can be generated per image when setting 'vis = True' in 'tools/eval_3D_lane.py'. We show two examples for each method under the data split involving illumination change.

  • 3D-LaneNet

  • Gen-LaneNet

Citation

Please cite the paper in your publications if it helps your research:

@article{guo2020gen,
  title={Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection},
  author={Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jinghao Miao, Jingao Wang, and Tae Eun Choe},
  booktitle={Computer Vision - {ECCV} 2020 - 16th European Conference},
  year={2020}
}

Copyright and License

The copyright of this work belongs to Baidu Apollo, which is provided under the Apache-2.0 license.

Owner
Yuliang Guo
Researcher in Computer Vision
Yuliang Guo
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022