This repository contains tutorials for the py4DSTEM Python package

Overview
Comments
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 1
  • SSB tutorial notebooks with new dataset

    SSB tutorial notebooks with new dataset

    These are two new tutorial notebooks I updated. One is for single-run reconstruction, the other is for interactive mode with ipywidgets and matplotlib visualization.

    opened by PhilippPelz 0
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 0
  • Add simulations for dynamical scattering

    Add simulations for dynamical scattering

    I found that there is almost no proper documentation for the dynamical scattering simulation in py4DSTEM unless you read the source code (actually I couldn't find the documentation for the whole diffraction module). So I created a tutorial using NaCl as an example. Hope I have done it right.

    opened by Taimin 0
  • py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    in the strain mapping tutorial, this step doesn't work !

    [12]

    Next, create a BF virtual detector using the the center beam position (qxy0, qy0)

    We will expand the BF radius slightly (+ 2 px).

    The DF virtual detector can be set to all remaining pixels.

    expand_BF = 2.0 image_BF = py4DSTEM.process.virtualimage.get_virtualimage_circ( dataset, qx0, qy0, probe_semiangle + expand_BF) image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( dataset, qx0, qy0, probe_semiangle + expand_BF, 1e3)

    [return]

    AttributeError Traceback (most recent call last) Input In [168], in <cell line: 5>() 1 # Next, create a BF virtual detector using the the center beam position (qxy0, qy0) 2 # We will expand the BF radius slightly (+ 2 px). 3 # The DF virtual detector can be set to all remaining pixels. 4 expand_BF = 2.0 ----> 5 image_BF = py4DSTEM.process.get_virtualimage_circ( 6 dataset, 7 qx0, qy0, 8 probe_semiangle + expand_BF) 9 image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( 10 dataset, 11 qx0, qy0, 12 probe_semiangle + expand_BF, 13 1e3)

    AttributeError: module 'py4DSTEM.process' has no attribute 'get_virtualimage_circ'

    Any tips to fix that ?

    py4DSTEM.process.virtualimage.virtualimage.get_virtualimage_circ or py4DSTEM.process.virtualimage.get_virtualimage_circ ?

    opened by lylofu 0
  • ACOM_03_Au_NP_sim.ipynb bugs

    ACOM_03_Au_NP_sim.ipynb bugs

    Running the ACOM_03 notebook as downloaded, cell 25 gives the following error:

    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    /var/folders/ts/tq6v7mks7hvg37ys5zvs1c2w0000gn/T/ipykernel_3012/3733081456.py in <module>
         14 
         15 # Fit an ellipse to the elliptically corrected bvm
    ---> 16 qx0_corr,qy0_corr,a_corr,e_corr,theta_corr = py4DSTEM.process.calibration.fit_ellipse_1D(bvm_ellipsecorr,(qx0,qy0),(qmin,qmax))
         17 
         18 py4DSTEM.visualize.show_elliptical_fit(
    
    NameError: name 'qmin' is not defined
    

    I think someone changed qmin, qmax to be a list called qrange and never actually tested the notebook in a fresh state.

    opened by sezelt 0
  • AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    When I run the "ACOM Tutorial Notebook 01", it gives a following error message.

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    version python 3.8.0 py4DSTEM 0.12.6 pywin32 302

    error

    opened by nomurayuki0503 0
Releases(v0.13.8-alpha)
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
113 Nov 28, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022