Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

Overview

RefinerViT

This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm and include the relabbeling trick included in TokenLabelling.

Introduction

Refined Vision Transformer is initially described in arxiv, which observes vision transformers require much more datafor model pre-training. Most of recent works thus are dedicated to designing morecomplex architectures or training methods to address the data-efficiency issue ofViTs. However, few of them explore improving the self-attention mechanism, akey factor distinguishing ViTs from CNNs. Different from existing works, weintroduce a conceptually simple scheme, calledrefiner, to directly refine the self-attention maps of ViTs. Specifically, refiner exploresattention expansionthatprojects the multi-head attention maps to a higher-dimensional space to promotetheir diversity. Further, refiner applies convolutions to augment local patternsof the attention maps, which we show is equivalent to adistributed local atten-tion—features are aggregated locally with learnable kernels and then globallyaggregated with self-attention. Extensive experiments demonstrate that refinerworks surprisingly well. Significantly, it enables ViTs to achieve 86% top-1 classifi-cation accuracy on ImageNet with only 81M parameters.

Please run git clone with --recursive to clone timm as submodule and install it with cd pytorch-image-models && pip install -e ./

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml numpy timm==0.4.5

A summary of the results are shown below for quick reference. Details can be found in the paper.

Model head layer dim Image resolution Param Top 1
Refiner-ViT-S 12 16 384 224 25M 83.6
Refiner-ViT-S 12 16 384 384 25M 84.6
Refiner-ViT-M 12 32 420 224 55M 84.6
Refiner-ViT-M 12 32 420 384 55M 85.6
Refiner-ViT-L 16 32 512 224 81M 84.9
Refiner-ViT-L 16 32 512 384 81M 85.8
Refiner-ViT-L 16 32 512 448 81M 86.0

Training

Train the Refiner-ViT-S from scratch:

bash run.sh scripts/refiner_s.yaml 

To use the re-labbeling tricks for improving the accuracy, download the relabel_data based on NFNet. This is provided in TokenLabelling repo. Then, copy the relabbeling data to the data folder.

retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023