Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Overview

Osborne Mine, Australia - Airborne total-field magnetic anomaly

This is a section of a survey acquired in 1990 by the Queensland Government, Australia. The data are good quality with approximately 80 m terrain clearance and 200 m line spacing. The anomalies are very visible and present interesting processing and modelling challenges, as well as plenty of literature about their geology.

Total field magnetic anomaly data and the flight height.

Summary
File osborne-magnetic.csv.xz
Size 2.2 Mb
Version v1
DOI https://doi.org/10.5281/zenodo.5882209
License CC-BY
MD5 md5:b26777bdde2f1ecb97dda655c8b1cf71
SHA256 sha256:12d4fc2c98c71a71ab5bbe5d9a82dd263bdbf30643ccf7832cbfec6249d40ded
Source Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/142419
Original license CC-BY
Processing code prepare.ipynb

Changes made

These are the changes made to the original dataset.

  • Change the horizontal datum from GDA94 to WGS84.
  • Convert terrain clearance to flight height using an SRTM grid.
  • Keep only the coordinates, AWAGS leveled magnetic anomaly, and flight line ID.
  • Cut to a smaller region containing only the 2 anomalies of interest.

Useful references

For prior interpretations and geological context:

About this repository

This is a place to format and prepare the original dataset for use in our tutorials and documentation.

We include the source code that prepares the datasets for redistribution by filtering, standardizing, converting coordinates, compressing, etc. The goal is to make loading the data as easy as possible (e.g., a single call to pandas.read_csv or xarray.load_dataset). Whenever possible, the code also downloads the original data (otherwise the original data are included in this repository).

💡 Tip: The easiest way to download this dataset is using Pooch, particularly to download straight from the DOI of a release.

Contributing

See our Contributing Guidelines for information on proposing new datasets and making changes to this repository.

License

All Python source code is made available under the BSD 3-clause license. You can freely use and modify the code, without warranty, so long as you provide attribution to the authors.

Unless otherwise specified, all data files and figures created by the code are available under the Creative Commons Attribution 4.0 License (CC-BY).

See LICENSE.txt for the full text of each license.

The license for the original data is specified in this README.md file.

You might also like...
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

A Python library created to assist programmers with complex mathematical functions
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers.

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Autonomous Perception: 3D Object Detection with Complex-YOLO
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

Releases(v1)
  • v1(Jan 20, 2022)

    Date: 2022/01/20

    DOI: https://doi.org/10.5281/zenodo.5882209

    Note: This is a processed and formatted version of the source dataset below. It's meant for use in documentation and tutorials of the Fatiando a Terra project. Please cite the original authors when using this dataset.

    Data source: Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/142419

    Changes:

    • 🎉 First release of the curated version of the Osborne Mine aeromagnetic data.

    | | Checksums | |--:|:--| | MD5 | md5:b26777bdde2f1ecb97dda655c8b1cf71 | | SHA256 | sha256:12d4fc2c98c71a71ab5bbe5d9a82dd263bdbf30643ccf7832cbfec6249d40ded |

    Source code(tar.gz)
    Source code(zip)
    osborne-magnetic.csv.xz(2.11 MB)
Owner
Fatiando a Terra Datasets
FAIR sample datasets for use in the Fatiando a Terra project
Fatiando a Terra Datasets
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022