Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

Overview

scalableMARL

Scalable Reinforcement Learning Policies for Multi-Agent Control

CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Learning Policies for Multi-Agent Control". IEEE International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021.

Multi-Agent Reinforcement Learning method to learn scalable control polices for multi-agent target tracking.

  • Author: Christopher Hsu
  • Email: [email protected]
  • Affiliation:
    • Department of Electrical and Systems Engineering
    • GRASP Laboratory
    • @ University of Pennsylvania

Currently supports Python3.8 and is developed in Ubuntu 20.04

scalableMARL file structure

Within scalableMARL (highlighting the important files):

scalableMARL
    |___algos
        |___maTT                          #RL alg folder for the target tracking environment
            |___core                      #Self-Attention-based Model Architecture
            |___core_behavior             #Used for further evaluation (Ablation D.2.)
            |___dql                       #Soft Double Q-Learning
            |___evaluation                #Evaluation for Main Results
            |___evaluation_behavior       #Used for further evaluation (Ablation D.2.)
            |___modules                   #Self-Attention blocks
            |___replay_buffer             #RL replay buffer for sets
            |___run_script                #**Main run script to do training and evaluation
    |___envs
        |___maTTenv                       #multi-agent target tracking
            |___env
                |___setTracking_v0        #Standard environment (i.e. 4a4t tasks)
                |___setTracking_vGreedy   #Baseline Greedy Heuristic
                |___setTracking_vGru      #Experiment with Gru (Ablation D.3)
                |___setTracking_vkGreedy  #Experiment with Scalability and Heuristic Mask k=4 (Ablation D.1)
        |___run_ma_tracking               #Example scipt to run environment
    |___setup                             #set PYTHONPATH ($source setup)
  • To setup scalableMARL, follow the instruction below.

Set up python environment for the scalableMARL repository

Install python3.8 (if it is not already installed)

#to check python version
python3 -V

sudo apt-get update
sudo apt-get install python3.8-dev

Set up virtualenv

Python virtual environments are used to isolate package installation from the system

Replace 'virtualenv name' with your choice of folder name

sudo apt-get install python3-venv 

python3 -m venv --system-site-packages ./'virtualenv name'
# Activate the environment for use, any commands now will be done within this venv
source ./'virtualenv name'/bin/activate

# To deactivate (in terminal, exit out of venv), do not use during setup
deactivate

Now that the virtualenv is activated, you can install packages that are isolated from your system

When the venv is activated, you can now install packages and run scripts

Install isolated packages in your venv

sudo apt-get install -y eog python3-tk python3-yaml python3-pip ssh git

#This command will auto install packages from requirements.txt
pip3 install --trusted-host pypi.python.org -r requirements.txt

Current workflow

Setup repos

# activate virtualenv
source ./'virtualenv name'/bin/activate
# change directory to scalableMARL
cd ./scalableMARL
# setup repo  ***important in order to set PYTHONPATH***
source setup

scalableMARL repo is ready to go

Running an algorithm (for example maPredPrey)

# its best to run from the scalableMARL folder so that logging and saving is consistent
cd ./scalableMARL
# run the alg
python3 algos/maTT/run_script.py

# you can run the alg with different argument parameters. See within run_script for more options.
# for example
python3 algos/maTT/run_script.py --seed 0 --logdir ./results/maPredPrey --epochs 40

To test, evaluate, and render()

# for a general example 
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./results/maTT/setTracking-v0_123456789/seed_0/ --nb_test_eps 50
# for a saved policy in saved_results
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./saved_results/maTT/setTracking-v0_123456789/seed_0/

To see training curves

tensorboard --logdir ./results/maTT/setTracking-v0_123456789/

Citing scalableMARL

If you reference or use scalableMARL in your research, please cite:

@misc{hsu2021scalable,
      title={Scalable Reinforcement Learning Policies for Multi-Agent Control}, 
      author={Christopher D. Hsu and Heejin Jeong and George J. Pappas and Pratik Chaudhari},
      year={2021},
      eprint={2011.08055},
      archivePrefix={arXiv},
      primaryClass={cs.MA}
}

Owner
Christopher Hsu
Christopher Hsu
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022