yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

Overview

YOLOX-Backbone

yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models.

Install

pip install yolox-backbone

Load a Pretrained Model

Pretrained models can be loaded using yolox_backbone.create_model.

import yolox_backbone

m = yolox_backbone.create_model('yolox-s', pretrained=True)
m.eval()

List Supported Models

import yolox_backbone
from pprint import pprint

model_names = yolox_backbone.list_models()
pprint(model_names)

>>> ['yolox-s',
 'yolox-m',
 'yolox-l',
 'yolox-x',
 'yolox-nano',
 'yolox-tiny',
 'yolox-darknet53']

Select specific feature levels

There is one creation argument impacting the output features.

  • out_features selects which FPN features to output

Example

import yolox_backbone
import torch
from pprint import pprint

pprint(yolox_backbone.list_models())

model_names = yolox_backbone.list_models()
for model_name in model_names:
    print("model_name: ", model_name)
    model = yolox_backbone.create_model(model_name=model_name, 
                                        pretrained=True, 
                                        out_features=["P3", "P4", "P5"]
                                        )

    input_tensor = torch.randn((1, 3, 640, 640))
    fpn_output_tensors = model(input_tensor)

    p3 = fpn_output_tensors["P3"]
    p4 = fpn_output_tensors["P4"]
    p5 = fpn_output_tensors["P5"]
    
    print("input_tensor.shape: ", input_tensor.shape)
    print("p3.shape: ", p3.shape)
    print("p4.shape: ", p4.shape)
    print("p5.shape: ", p5.shape)
    print("-" * 50)
    

Output:

['yolox-s', 'yolox-m', 'yolox-l', 'yolox-x', 'yolox-nano', 'yolox-tiny', 'yolox-darknet53']
model_name:  yolox-s
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
model_name:  yolox-m
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 192, 80, 80])
p4.shape:  torch.Size([1, 384, 40, 40])
p5.shape:  torch.Size([1, 768, 20, 20])
--------------------------------------------------
model_name:  yolox-l
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 256, 80, 80])
p4.shape:  torch.Size([1, 512, 40, 40])
p5.shape:  torch.Size([1, 1024, 20, 20])
--------------------------------------------------
model_name:  yolox-x
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 320, 80, 80])
p4.shape:  torch.Size([1, 640, 40, 40])
p5.shape:  torch.Size([1, 1280, 20, 20])
--------------------------------------------------
model_name:  yolox-nano
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 64, 80, 80])
p4.shape:  torch.Size([1, 128, 40, 40])
p5.shape:  torch.Size([1, 256, 20, 20])
--------------------------------------------------
model_name:  yolox-tiny
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 96, 80, 80])
p4.shape:  torch.Size([1, 192, 40, 40])
p5.shape:  torch.Size([1, 384, 20, 20])
--------------------------------------------------
model_name:  yolox-darknet53
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
Owner
Yonghye Kwon
practical
Yonghye Kwon
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023