The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n saint_env python=3.8
conda activate saint_env

We recommend installing the latest pytorch, torchvision, einops, pandas, wget, sklearn packages.

You can install them using

conda install pytorch torchvision -c pytorch
conda install -c conda-forge einops 
conda install -c conda-forge pandas 
conda install -c conda-forge python-wget 
conda install -c anaconda scikit-learn 

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Optional

We used wandb to update our logs. But it is optional.

conda install -c conda-forge wandb 

Training & Evaluation

In each of our experiments, we use a single Nvidia GeForce RTX 2080Ti GPU.

First download the processed datasets from this link into the folder ./data

To train the model(s) in the paper, run this command:

python train.py  --dataset <dataset_name> --attentiontype <attention_type> 

Pretraining is useful when there are few training data samples. Sample code looks like this

python train.py  --dataset <dataset_name> --attentiontype <attention_type> --pretrain --pt_tasks <pretraining_task_touse> --pt_aug <augmentations_on_data_touse> --ssl_avail_y <Number_of_labeled_samples>

Train all 16 datasets by running bash files. train.sh for supervised learning and train_pt.sh for pretraining and semi-supervised learning

bash train.sh
bash train_pt.sh

Arguments

  • --dataset : Dataset name. We support only the 16 datasets discussed in the paper. Supported datasets are ['1995_income','bank_marketing','qsar_bio','online_shoppers','blastchar','htru2','shrutime','spambase','philippine','mnist','arcene','volkert','creditcard','arrhythmia','forest','kdd99']
  • --embedding_size : Size of the feature embeddings
  • --transformer_depth : Depth of the model. Number of stages.
  • --attention_heads : Number of attention heads in each Attention layer.
  • --cont_embeddings : Style of embedding continuous data.
  • --attentiontype : Variant of SAINT. 'col' refers to SAINT-s variant, 'row' is SAINT-i, and 'colrow' refers to SAINT.
  • --pretrain : To enable pretraining
  • --pt_tasks : Losses we want to use for pretraining. Multiple arguments can be passed.
  • --pt_aug : Types of data augmentations used in pretraining. Multiple arguments are allowed. We support only mixup and CutMix right now.
  • --ssl_avail_y : Number of labeled samples used in semi-supervised experiments. Default is 0, which means all samples are labeled and is supervised case.
  • --pt_projhead_style : Projection head style used in contrastive pipeline.
  • --nce_temp : Temperature used in contrastive loss function.
  • --active_log : To update the logs onto wandb. This is optional

Evaluation

We choose the best model by evaluating the model on validation dataset. The AUROC(for binary classification datasets) and Accuracy (for multiclass classification datasets) of the best model on test datasets is printed after training is completed. If wandb is enabled, they are logged to 'test_auroc_bestep', 'test_accuracy_bestep' variables.

Acknowledgements

We would like to thank the following public repo from which we borrowed various utilites.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Cite us

@article{somepalli2021saint,
  title={SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training},
  author={Somepalli, Gowthami and Goldblum, Micah and Schwarzschild, Avi and Bruss, C Bayan and Goldstein, Tom},
  journal={arXiv preprint arXiv:2106.01342},
  year={2021}
}

Owner
Gowthami Somepalli
Gowthami Somepalli
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022