Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Related tags

Deep Learningners
Overview

Code for Neural Reflectance Surfaces (NeRS)

[arXiv] [Project Page] [Colab Demo] [Bibtex]

This repo contains the code for NeRS: Neural Reflectance Surfaces.

The code was tested with the following dependencies:

  • Python 3.8.6
  • Pytorch 1.7.0
  • Pytorch3d 0.4.0
  • CUDA 11.0

Installation

Setup

We recommend using conda to manage dependencies. Make sure to install a cudatoolkit compatible with your GPU.

git clone [email protected]:jasonyzhang/ners.git
conda create -n ners python=3.8
cond activate pytorch3d
conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=11.0
pip install -r requirements.txt

Installing Pytorch3d

Here, we list the recommended steps for installing Pytorch3d. Refer to the official installation directions for troubleshooting and additional details.

mkdir -p external
git clone https://github.com/facebookresearch/pytorch3d.git external/pytorch3d
cd external/pytorch3d
conda install -c conda-forge -c fvcore -c iopath fvcore iopath
conda install -c bottler nvidiacub
python setup.py install

If you need to compile for multiple architectures (e.g. Turing for 2080TI and Maxwell for 1080TI), you can pass the architectures as an environment variable, i.e. TORCH_CUDA_ARCH_LIST="Maxwell;Pascal;Turing;Volta" python setup.py install.

If you get a warning about the default C/C++ compiler on your machine, you should compile Pytorch3D using the same compiler that your pytorch installation uses, likely gcc/g++. Try: CC=gcc CXX=g++ python setup.py install.

Acquiring Object Masks

To get object masks, we recommend using PointRend for COCO classes or GrabCut for other categories.

If using GrabCut, you can try this interactive segmentation tool.

Running the Code

Running on MVMC

Coming Soon!

Running on Your Own Objects

We recommend beginning with the demo notebook so that you can visualize the intermediate outputs. The demo notebook generates the 3D reconstruction and illumination prediction for the espresso machine (data included). You can also run the demo script:

python main.py --instance-dir data/espresso --symmetrize --export-mesh --predict-illumination

We also provide a Colab notebook that runs on a single GPU. Note that the Colab demo does not include the view-dependent illumination prediction. At the end of the demo, you can view the turntable NeRS rendering and download the generated mesh as an obj.

To run on your own objects, you will need to acquire images and masks. See data/espresso for an example of the expected directory structure.

We also provide the images and masks for all objects in the paper. All objects except hydrant and robot should have a --symmetrize flag.

gdown  https://drive.google.com/uc?id=1JWuofTIlcLJmmzYtZYM2SvZVizJCcOU_
unzip -f misc_objects.zip -d data

Citing NeRS

If you use find this code helpful, please consider citing:

@inproceedings{zhang2021ners,
  title={{NeRS}: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild},
  author={Zhang, Jason Y. and Yang, Gengshan and Tulsiani, Shubham and Ramanan, Deva},
  booktitle={Conference on Neural Information Processing Systems},
  year={2021}
}
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022