Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

Overview

A Latent Transformer for Disentangled Face Editing in Images and Videos

Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

[Video Editing Results]

Requirements

Dependencies

  • Python 3.6
  • PyTorch 1.8
  • Opencv
  • Tensorboard_logger

You can install a new environment for this repo by running

conda env create -f environment.yml
conda activate lattrans 

Prepare StyleGAN2 encoder and generator

  • We use the pretrained StyleGAN2 encoder and generator released from paper Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation. Download and save the official implementation to pixel2style2pixel/ directory. Download and save the pretrained model to pixel2style2pixel/pretrained_models/.

  • In order to save the latent codes to the designed path, we slightly modify pixel2style2pixel/scripts/inference.py.

    # modify run_on_batch()
    if opts.latent_mask is None:
        result_batch = net(inputs, randomize_noise=False, resize=opts.resize_outputs, return_latents=True)
        
    # modify run()
    tic = time.time()
    result_batch, latent_batch = run_on_batch(input_cuda, net, opts) 
    latent_save_path = os.path.join(test_opts.exp_dir, 'latent_code_%05d.npy'%global_i)
    np.save(latent_save_path, latent_batch.cpu().numpy())
    toc = time.time()
    

Training

  • Prepare the training data

    To train the latent transformers, you can download our prepared dataset to the directory data/ and the pretrained latent classifier to the directory models/.

    sh download.sh
    

    You can also prepare your own training data. To achieve that, you need to map your dataset to latent codes using the StyleGAN2 encoder. The corresponding label file is also required. You can continue to use our pretrained latent classifier. If you want to train your own latent classifier on new labels, you can use pretraining/latent_classifier.py.

  • Training

    You can modify the training options of the config file in the directory configs/.

    python train.py --config 001 
    

Testing

Single Attribute Manipulation

Make sure that the latent classifier is downloaded to the directory models/ and the StyleGAN2 encoder is prepared as required. After training your latent transformers, you can use test.py to run the latent transformer for the images in the test directory data/test/. We also provide several pretrained models here (run download.sh to download them). The output images will be saved in the folder outputs/. You can change the desired attribute with --attr.

python test.py --config 001 --attr Eyeglasses --out_path ./outputs/

If you want to test the model on your custom images, you need to first encoder the images to the latent space of StyleGAN using the pretrained encoder.

cd pixel2style2pixel/
python scripts/inference.py \
--checkpoint_path=pretrained_models/psp_ffhq_encode.pt \
--data_path=../data/test/ \
--exp_dir=../data/test/ \
--test_batch_size=1

Sequential Attribute Manipulation

You can reproduce the sequential editing results in the paper using notebooks/figure_sequential_edit.ipynb and the results in the supplementary material using notebooks/figure_supplementary.ipynb.

User Interface

We also provide an interactive visualization notebooks/visu_manipulation.ipynb, where the user can choose the desired attributes for manipulation and define the magnitude of edit for each attribute.

Video Manipulation

Video Result

We provide a script to achieve attribute manipulation for the videos in the test directory data/video/. Please ensure that the StyleGAN2 encoder is prepared as required. You can upload your own video and modify the options in run_video_manip.sh. You can view our video editing results presented in the paper.

sh run_video_manip.sh

Citation

@article{yao2021latent,
  title={A Latent Transformer for Disentangled Face Editing in Images and Videos},
  author={Yao, Xu and Newson, Alasdair and Gousseau, Yann and Hellier, Pierre},
  journal={2021 International Conference on Computer Vision},
  year={2021}
}

License

Copyright © 2021, InterDigital R&D France. All rights reserved.

This source code is made available under the license found in the LICENSE.txt in the root directory of this source tree.

High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022